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Dynamic Programming Approach
The idea of dynamic programming is to reduce the optimization into a
series of single-period optimization problems (or optimization problems
at a point of time in a continuous-time model). Optimal decisions for
the future are given, and are encoded in the “continuation value” as
a function of what happens this period. The continuation value (or
the “value function”) is a function of the “state variables” that are
important for determining what happens going forward. State variables
could include such variables as wealth, time, and current interest rate
or mean return on the stock. We use the first-order conditions from the
single-period problem to solve for the value function and strategy as a
function of the state variables.

The art in dynamic programming is related to the state variables. Solving
the problem is at least easier (and perhaps only possible) if we have the
correct state variables. Also, in general, the more state variables there
are, the harder the problem is to solve, so it usually makes sense to make
some strong assumptions to keep the number of state variables low.
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A discrete-time dynamic portfolio problem
Given w0 at time 0,
choose adapted investment θs, consumption cs ≥ 0, and wealth ws to
maximize E[∑T−1

s=0
1

(1+ρ)su(cs) +
1

(1+ρ)T
b(wT )]

subject to
(∀s)ws+1 = (ws − cs)(1 + rf) + θs(rs+1 − rf) (budget constraint)
and (∀s)ws ≥ 0 (nonnegative wealth).

ws: wealth at time s before consumption
cs: consumption at time s
wT : terminal wealth or bequest∑T−1
s=0

1
(1+ρ)su(ct)+

1
(1+ρ)T

b(wT ) time-separable von Neumann-Morgenstern
utility function
u(cs): felicity function (also called utility function)
ρ: pure rate of time discount
b(wT ): utility of the bequest
rf : riskfree rate
rs: random rate of return on the risky asset from s− 1 to s

3



Possible variations
In the previous page, if there is no preference for consumption over time
(u(c) ≡ 0 and the cs ≡ 0’s are not choice variables), this is a terminal
horizon problem, which could be a useful model for saving for retirement
or a nuclear decommissioning trust. If we include consumption cs over
time, with or without the bequest, this is a consumption withdrawal
problem. If T = ∞, we do not have the term b(wT ) and we call this
an infinite-horizon model. Infinite-horizon problems can be easier to
solve than finite horizon problems because the optimal portfolio does
not depend on how much time is left.

If we have cash flows that must be met over time, these liabilities are
included in the budget constraint and we would call this an asset-liability
management (ALM) problem. ALM problems are common in defined-
benefit retirement plans, insurance, and should be important for univer-
sity endowments and other settings. We could also account for inflows
over time, e.g. from salary and wages, within the budget constraint.
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Dynamic programming: value function V (w, t)

In dynamic programming, the value function gives the value of contin-
uing as a function of how things stand at a point in time. For this
problem, the value function V (w, t) is the optimized value of the objec-
tive function of the continuation problem:

Given wt = w at time t,
choose adapted investment θs, consumption cs ≥ 0, and wealth ws to
maximize E[∑T−1

s=t
1

(1+ρ)s−tu(cs) +
1

(1+ρ)T−tb(wT )]

subject to
(∀s)ws+1 = (ws − cs)(1 + rf) + θs(rs+1 − rf) (budget constraint)
and (∀s)ws ≥ 0 (nonnegative wealth).

We condition only on state variables w and t that matter going forward.
If we include too many variables, maybe it is possible to prove that the
unneeded ones don’t matter, but it probably requires more work. If T =
∞, V (w, t) = V (w) and t is not a state variable since the continuation
problem is the same at all t and depends only on the starting wealth.
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Dynamic programming equation (Bellman equation1)
Assume returns are i.i.d. in the problem two slides previous, and that
V (w, t) is the value function before consuming at t. Then the Bellman
equation is:

V (wt, t) = maxct,θt

u(ct) + E[V ((wt−ct)(1+rf )+θt(rt+1−rf ),t+1)]

1+ρ


First-order conditions:

u′(c∗t ) =
E[(1+rf )V

′
w((wt−c∗t )(1+rf )+θ∗t (rt+1−rf ),t+1)]

1+ρ

E[(rt+1 − rf)V
′
w((wt − c∗t )(1 + rf) + θ∗t (rt+1 − rf), t + 1)] = 0

V (wt, t) = u(c∗t ) +
E[V ((wt − c∗t )(1 + rf) + θ∗t (rt+1 − rf), t + 1)]

1 + ρ

Hopefully, this seems natural or at least plausible that we can look at the
decision now in isolation given the value of continuing in different con-
tingencies. We will derive this using martingale tools for the continuous
case, and almost the same derivation works for this case.

1Some people tack on other names, for example, Hamilton-Jacoby-Bellman (HJB) equation.
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Continuous-time dynamic portfolio problem (single risky asset)
Given w0 at time 0,
choose adapted risky investment θs, consumption cs ≥ 0, and wealth
ws to
maximize E[

∫ T
s=0e

−ρsu(cs)ds + e−ρTb(wT )]
subject to:
(∀s)(dws = rwsds + θs((µ− r)ds + σdZs)− csds)
(∀s)(ws ≥ 0)

In this continuous-time problem, w0 is initial wealth, θs is the portfolio
weight in wealth units, cs is the consumption process, u(·) is the felicity
function (also called utility function), b(wT ) is the contribution to utility
of the bequest wT , ρ is the pure rate of time discount, r is the riskfree
rate, µ is the mean return on the risky asset, dZs is the underlying
noise in the risky asset, and σ2 is the local variance of the risky asset.
If T = ∞ (an infinite-horizon problem), we exclude the bequest term
b(·), and for a terminal horizon problem we exclude consumption choice
variables (cs’s) and the integral with the utility u(cs).
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Value function V (w, t)

For our continuous-time example, the value function V (w, t) is the op-
timized objective function of the problem

Given wt = w at time t,
choose adapted risky investment quantities θs, consumption cs ≥ 0, and
wealth ws to
maximize E[

∫ T
s=te

−ρ(s−t)u(cs)ds + e−ρ(T−t)b(wT )]
subject to:
(∀s)(dws = rwsds + θs((µ− r)ds + σdZs)− csds), and
(∀s)(ws ≥ 0)

The state variables w and t summarize everything we need to know about
the past to solve the optimization problem going forward. We could
also consider a richer choice problem with more state variables (e.g. the
current interest rate, current stock return volatility, or estimated future
liabilities in an ALM setting). Adding state variables may make the
optimization more realistic, but it also can make it harder to estimate
the parameters and solve.
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Value process Mt

We will follow Fleming and Richel and use the “martingale approach”
to deriving the Bellman equation. Given the value function V (w, t)
(perhaps unknown for now), define

Mt ≡
∫ t
s=0e

−ρsu(cs)ds + e−ρtV (wt, t).

For any candidate feasible strategy, this is the conditional expectation of
the realized value, given information at time t, of following the candidate
strategy until t then switching to the optimal strategy. The integral in
the definition is the value of what has already happened, and the final
term is the value of what is in the future.
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Value process Mt: martingale given the optimal strategy
Recall that a stochastic process Mt is called a martingale if it doesn’t
change on average, so for s < t, Es[Mt] = Ms. Conditional ex-
pectations are martingales by the law of iterated expectations. Let
Mt ≡ Et[X ] for some random variable X . Then Es[Mt] = Es[Et[X ]] =
Es[X ] = Ms.

If the candidate strategy is optimal, following the candidate strategy un-
til t then switching to the optimal strategy means following the optimal
strategy all the time. Therefore, Mt is the conditional expectation at t
of following the optimal strategy, and therefore a martingale.
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Value process Mt: supermartingale given any strategy
Recall that a stochastic process Mt is called a supermartingale if it
never increases on average, so for s < t, Es[Mt] ≤ Ms. If we are
following an candidate strategy, Mt defined in the previous slide may be a
supermartingale and is only a martingale if the strategy is optimal. Note
that a martingale is a supermartingale; we can call a supermartingale
that is not a martingale a strict supermartingale.

Given any candidate strategy, recall that Mt is the expected value given
information at time t of following the candidate strategy up until time
t and then switching to the optimal strategy from t onwards. Given the
optimal strategy, changes in Mt only reflect good or bad luck and on
average are zero. However, for a sub-optimal strategy, as t increases,
changes in Mt reflect both good or bad luck and the impact of following
a sub-optimal strategy for a longer time. Therefore, for s < t, the
decline E[Ms]−E[Mt] is the loss in utility terms of irreversible mistakes
made between times s and t.
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Value process Mt: to the Bellman equation
Mt will be an Itô process (dMt = atdt+btdZt for some random processes
at and bt). Then, if Mt is a martingale, the drift at = 0. If it is
a supermartingale, the drift at ≤ 0. Therefore, the optimal strategy
maximizes the drift, and the maximized drift is zero. Therefore, we
have

max
θt,ct

drift(Mt) = 0,

By Itô’s lemma and the formula for dwt from the constraint,

dM = e−ρt(u(c)dt + (Vt − ρV (w, t))dt + Vw(w, t)(rwdt

+ θ((µ− r)dt + σdZ)− cdt) +
θ2σ2

2
Vwwdt),

and therefore we have the Bellman equation

max
θ,c

u(c) + Vt − ρV + (rw + θ(µ− r)− c)Vw +
θ2σ2

2
Vww

 = 0.
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Mini math review: univariate Itô’s lemma
Let H : ℜ × [0, T ] → ℜ with continuous partial derivatives Hx(x, t),
Hxx(x, t), and Ht(x, t). Let dXt = g(t)dt+G(t)dZt, where Xt is a 1-
dimensional process and Zt is a 1-dimentional standard Wiener process.
Then Yt ≡ H(Xt, t) is an Itô process with stochastic differential

dYt = Htdt +HxdX +
1

2
G2Hxxdt
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Towards a solution: optimal c and θ

Taking the first-order conditions for the maximization in the Bellman
equation with respect to c and θ, we have that

u′(c) = Vw

and

(µ− r)Vw +
2σ2θ

2
Vww = 0.

Therefore, the optimal choices are

c∗ = I(Vw)

where I(·) is the inverse of the marginal utility function, and

θ∗ = −µ− r

σ2

Vw

Vww
.
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Bellman equation with optimized values
Recall that the Bellman equation is

max
θ,c

u(c) + Vt − ρV + (rw + θ(µ− r)− c)Vw +
θ2σ2

2
Vww

 = 0.

Substituting in the optimal consumption c∗ and optimal portfolio θ∗, we
have

u(I(Vw)) + Vt − ρV + (rw − I(Vw))Vw − (µ− r)2

2σ2

(Vw)
2

Vww
= 0.

Defining the dual function ũ(z) ≡ maxc u(c)− zc = u(I(z))− zI(z),

ũ(Vw) + Vt − ρV + rwVw − (µ− r)2

2σ2

(Vw)
2

Vww
= 0.

We can solve this subject to a boundary conditions at maturity and for
large and small wealth. For example, if T is finite, V (wT , T ) = b(wT ).
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Exploiting homotheticity
Consider the infinite horizon problem with u(c) = log(c) (and no b(w)
because of the infinite horizon). Then V (w0) is the optimized value of:

Given w0 > 0 at time 0,
choose adapted investment θs, consumption cs and wealth ws to
maximize E[

∫ ∞
s=0e

−ρs log(cs)ds]
subject to:
(∀s)(dws = rwsds + θs((µ− r)ds + σdZs)− csds)
(∀s)(ws ≥ 0)

Now letting ĉs ≡ cs/w0, ŵs ≡ ws/w0, and θ̂s ≡ θs/w0, this becomes

Given w0 > 0 at time 0 and therefore ŵ0 = 1,
choose adapted investment θ̂s consumption ĉs, and wealth ŵs to
maximize E[

∫ ∞
s=0e

−ρs log(w0ĉs)ds]
subject to:
(∀s)(dŵs = rŵsds + θ̂s((µ− r)ds + σdZs)− ĉsds)
(∀s)(ŵs ≥ 0)
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Exploiting homotheticity...continued
Now log(w0ĉs) = log(w0) + log(ĉs). Therefore, the objective function
of the second problem can be rewritten as

∫ ∞
s=0e

−ρs log(w0)ds + E[
∫ ∞
s=0e

−ρs log(ĉs)ds]

= log(w0)/ρ + E[
∫ ∞
s=0e

−ρs log(ĉs)ds].

Since w0 appears only in the leading constant term in the objective
(and not in the constraints), the optimal choice of ĉs, θ̂s, and ŵs does
not depend on w0. Therefore, the value of the problem can be writ-
ten as V (w) = log(w)/ρ + v, where v is the maximized value of
E[

∫ ∞
s=0e

−ρs log(ĉs)ds]. The value function does not depend on time
since the problem has the same form looking forward from any t, and in
particular there is the same amount of time to the horizon for all t.
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Optimal solution: log utility, infinite horizon
We have derived that V (w) = log(w)/ρ+v, and therefore Vt = 0, Vw =
1/(ρw), and Vww = −1/(ρw2). Furthermore, ũ(z) ≡ maxc u(c)−zc =
− log(z)− 1. Therefore, the Bellman equation (with optimized values)
is

0 = − log(Vw)− 1 + Vt − ρV + rwVw − (µ− r)2

2σ2

(Vw)
2

Vww

= − log

 1

ρw

 − 1 +
rw

ρw
− ρ(

log(w)

ρ
+ v)− (µ− r)2

2σ2

(1/(ρw))2

−1/(ρw2)

= log(ρ)− 1 + r/ρ− ρv + (µ− r)2/(2σ2ρ)

v =
log(ρ)

ρ
+
r − ρ

ρ2
+
(µ− r)2

2σ2ρ2
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Log utility portfolio choice, consumption and portfolio choice
We can also compute the optimal consumption and portfolio choice in
the infinite horizon case.

c∗ = I(Vw) = ρw

θ∗ = −µ− r

σ2

Vw

Vww
=

µ− r

σ2
w

We actually do not need to know the value of v to be able to compute
c∗ and θ∗. The risky investment is the proportion (µ− r)/σ2 of wealth,
and consumption rate is the proportion ρ of wealth. We can use a
similar homogeneity argument to solve a finite-horizon problem with
u(c) = K0 log(c) and b(w) = K1 log(w), where K0 and K1 are both
nonnegative and not both 0. In the finite-horizon problem with log utility,
the risky investment is the same proportion (µ − r)/σ2 of wealth, and
the optimal consumption rate is a deterministic proportion of wealth
that depends on the time to maturity.
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