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Decision-theoretic Approach to Investing
The course takes the decision-theoretic approach to choice problems.
Decision theory is good for thinking about choices conceptually and
includes techniques for solving problems.

The main focus of this course is to study continuous-time models of
investments. We will study two common approaches to analyzing these
problems: (1) dynamic programming and the Bellman equation and
(2) the one-shot approach using the stochastic discount factor. Both
of these approaches work by reducing our analysis to a single-period
problem, so it is useful to study single-period problems first. Single-
period problems are also useful in practice.

• What is decision theory and why is it useful?
• Choice problems and Kuhn-Tucker conditions
• single-period investment problems
• Fundamental Theorem of Asset Pricing
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What is decision theory?
Decision theory is the study of choice problems. It can be used to
decide what we need to do and can be used to predict what agents in
the economy will do. We will focus on the part of decision theory that
models decision-making in terms of choice problems. We solve a choice
problem, we have a choice variables that we pick, an objective function
to be maximized or minimized, and constraints (usually equalities or
inequalities) that must be satisfied.

Decision theory also provides a useful framework for organizing our
thoughts when we face decisions, whether or not we plan to formu-
late and solve them analytically. I like to think about the information
we have available, the choice variables, the objective function, and any
constraints we will face. Game theory also incorporates strategic deci-
sions by agents who anticipate the actions of other agents, while general
equilibrium looks at the implications at a market level of agents who op-
timize but are not strategic.
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A mean-variance choice problem
Choose risky portfolio proportions θ ∈ ℜN to
maximize µ′θ − γRθ

′V θ/2− γT (θ − θB)
′V (θ − θB)/2− C ′|θ − θ0|

subject to:
1′θ = 1 (fully invested)
(∀n = 1, ..., N )θn ≥ 0 (long only)

vector of choice variables: θ
objective function: µ′θ−γRθ

′V θ/2−γT (θ−θB)
′V (θ−θB)/2−C ′|θ−θ0|

equality constraint: 1′θ = 1
inequality constraints: (∀n = 1, ..., N )θn ≥ 0

Parameters:
µ: N × 1 vector of excess returns
V : N ×N covariance matrix of excess returns
γR, γT ≥ 0: scalar levels of aversion to risk and tracking error
θB: benchmark portfolio
θ0: initial portfolio
C: vector of proportional transaction costs
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Choice theory versus (or plus) AI
AI is great when (1) there is a lot of data and (2) the choice environ-
ment is static. Example: chess (the rules are constant and there is an
essentially unlimited supply of games, can play more if needed)

Choice theory is great for (1) changing environments and (2) not so
much data. Example: mortgage-backed securities leading up to the
financial crisis (the terms for subprime mortgages were different than
for any available data)

In the future, the best practitioners will be able to use both, sometimes
in combination. As an example of how to combine choice theory and
AI, we can use AI to form predictions of the mean vector and covariance
matrix to serve as inputs for an optimization model. And, we can use
choice theory to formulate an economic model of the predicted impact
on the mean and covariance matrices of what is new about the current
circumstances (e.g. the pandemic). The forward-looking analysis from
theory supplements the backward-looking information in the AI.
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Tiny math review: calculus with matrices
Let f : ℜN → ℜ and x ∈ ℜN . Then df(x)

dx = ∇f (x) = f ′(x) =(
∂f(x)
∂x1

, ∂f(x)∂x2
, ...∂f(x)∂xN

)

f ′′(x) =



∂2f(x)
∂x21

∂2f(x)
∂x1∂x2

... ∂2f(x)
∂x1∂xN

∂2f(x)
∂x2∂x1

∂2f(x)
∂x22

... ∂2f(x)
∂x2∂xN... . . . ...

∂2f(x)
∂xN∂x1

∂2f(x)
∂xN∂x2

... ∂2f(x)
∂x2N



Let a ∈ ℜN be a column vector of constants, and let A ∈ ℜN×N and
B ∈ ℜN×K be a matrices of constants. Then1

d(a′x)

dx
=

d(x′a)

dx
= a, d(B

′x)

dx
= B′, and d(x′B)

dx
= B

d(x′Ax)

dx
= (A + A′)x (= 2Ax if A is symmetric)

1Some people use different conventions about rows versus columns of derivatives (and I may not be consistent).
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Tiny math review: eigenvalues and eigenvectors
Let A be a square (N ×N) matrix. Then λ is an eigenvalue of A with
associated eigenvector x ̸= 0 if

Ax = λx.

and the set of eigenvalues is the same (including multiplicity) as the set
of solutions to the polynomial equation

det(A− λI) = 0,

where det(·) indicates the determinant. In our applications, A is often
symmetric: in finance, A is likely to be a covariance matrix or a matrix of
second partial derivatives. If A is symmetric, then A has N eigenvalues,
all real (not complex numbers), and we can choose the corresponding
eigenvectors to be an orthonormal basis of ℜN . (Recall that x1, ..., xN
are orthonormal if x′ixj = 1 for i = j and = 0 otherwise.)
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Tiny math review: positive and negative definiteness
The symmetric square (N × N) matrix is said to be positive definite
if (∀x ̸= 0)x′Ax > 0, positive semi-definite if (∀x ̸= 0)x′Ax ≥ 0,
negative definite if (∀x ̸= 0)x′Ax < 0, or negative semi-definite if
(∀x ̸= 0)x′Ax ≤ 0. Definiteness is equivalent to signs of eigenvalues:

• A is positive definite iff all its eigenvalues are positive.
• A is positive semi-definite iff all its eigenvalues are positive or zero.
• A is negative definite iff all its eigenvalues are negative
• A is negative semi-definite iff all its eigenvalues are negative or zero

A covariance matrix is always positive semi-definite, and if nonsingular,
positive definite. If the second derivative matrix of a function is negative
semi-definite everywhere, the function is concave, and if it is negative
definite everywhere strictly concave. Similarly, if the second derivative
matrix of a function is positive semi-definite everywhere, the function is
convex, and if positive definite everywhere, strictly convex.2

2These are “almost” equivalences for twice differentiable functions; some people define concavity and strict concavity this way.
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Eigenvalues and covariance matrices
A symmetric matrix V is a covariance matrix for some random variables
if and only if V is positive semi-definite. If V is not positive semi-
definite, the V has a negative eigenvalue, say λi < 0 with associated
eigenvector xi. Then x′iV xi = x′iλixi = λi|xi|2 < 0, which cannot be.

Sometimes clients will give you the covariance matrix they want you to
use, but it is not positive semi-definite. This is a problem for simulation,
since no simulated random variables will conform to a covariance matrix
that is not positive semi-definite, and it is a problem with optimization
because the first-order conditions (usually) will not give you an actual
optimum and even if it does give a optimum (thanks to some constraints)
it will not be reasonable. Usually the source of the impossible covariance
matrix is computing different elements of the matrix in different sample
periods. My ad hoc fix of this is to replace each eigenvalue λi with
λ̂i = max(λi, κ), where κ is a small positive number. This will repair
the impossible part of the covariance matrix without causing too much
disruption to the rest.
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Simulating random variables using eigenvalues and eigenvectors
To simulate from positive semi-definite V , let λ1, ... λN be the eigen-
values with associated orthonormal eigenvectors x1,...xN . We can take
some N -vector ε of independent unit normal variables, ε ∼ N(0, IN×N),
and construct the N -vector y of random variables as

y = XΓε

where X is a matrix whose ith column is the ith eigenvector of V and
Γ is a diagonal matrix whose ith diagonal element is

√
λi. Then the co-

variance matrix of the y’s is E[yy′] = E[XΓεε′Γ′X ′] = XΓIN×NΓ
′X ′ =

XΛX ′, where Λ = ΓΓ′ is the diagonal matrix with the eigenvalues in
order on the diagonal. However, we will show that XΛX ′ = V . Letting
1i be the ith unit vector (the N -vector with 1i = 1 and 1j = 0 for
j ̸= i), we have that (∀i)XΛX ′xi = XΛ1i = Xλi1i = λixi, and be-
cause a matrix is determined by its product with all elements of a basis.
Therefore, a symmetric matrix V is a covariance matrix if and only if it
is postive semi-definite.
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Matrix square root, repairs
Note that S ≡ XΓ is one of many square roots of the matrix V , defined
by V = SS ′.

The description of how to do the simulation also tells us how to do the
repair when we replace λi by λ̂i ≡ max(λi, κ) for some small κ > 0

Let Λ̂ be the diagonal matrix with Λ̂ii =
√
λ̂i. Then V̂ = X ′Λ̂X is the

repaired covariance matrix.

If we try to use the simulation procedure for a matrix V that is not
positive semi-definite, we will have Γii is the square root of a negative
number and is therefore imaginary! This “helps” since if ε is a real-
valued random variable with mean zero and positive variance, var(iε) =
E[(iε)2] = −var(ε). However, this is of course total nonsense. Unless
your clients insist on complex-valued simulated security returns, you had
better find a way to make the covariance matrix positive semi-definite.
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Solving the choice problem: Kuhn-Tucker Conditions
Consider the maximization problem:

Choose x ∈ ℜN to
maximize f (x)
subject to (∀i ∈ E)gi(x) = 0, and
(∀i ∈ I)gi(x) ≤ 0.

x = (x1, ..., xN) is a vector of choice variables.
f (x) is the scalar-valued objective function.
gi(x) = 0, i ∈ E are equality constraints.
gi(x) ≤ 0, i ∈ I are inequality constraints.
E ∩ I = ∅

Kuhn-Tucker conditions:

∇f (x∗) = ∑
i∈E ∪ I λi∇gi(x

∗)
(∀i ∈ I)λi ≥ 0
λigi(x

∗) = 0
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Solving the choice problem: some definitions

• A feasible solution (or feasible choice) x satisfies the constraints but
may not maximize the objective function. A problem is said to be
feasible if it has a feasible solution.

• An optimal solution (or optimal choice) x is feasible and x has the
smallest value of the objective function (largest if maximizing) of all
feasible solutions. (Also, commonly called “solution.”)

• An interior solution is an optimal solution at which no constraints
are binding.

• A corner solution is an optimal solution at which constraints are
binding.

• A local optimum is a feasible choice x∗ that, for some ε > 0, is
optimal in the problem with the additional constraint ∥x−x∗∥ ≤ ε.

• value is f (x∗) for optimal x∗
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Solving the choice problem: Kuhn-Tucker theorem
The feasible solution x∗ is said to be regular if the set {∇gi(x

∗)|gi(x∗) =
0} is a linearly independent set. In particular, an interior solution is
always regular.

This maximization problem is said to be convex if the objective is con-
cave (f ′′(x) negative semidefinite everywhere) and the constraint set is
convex. The constraint set is convex if gi(x) is affine for all i ∈ E and
gi(x) is convex (g′′i (x) is positive semidefinite) for all i ∈ I.

If x∗ is regular and f and the gi’s are differentiable, the Kuhn-Tucker
conditions are necessary for feasible x∗ to be optimal. If the optimization
problem is convex, then the Kuhn-Tucker conditions are sufficient for an
optimum.

Applied mathematicians commonly look at minimizing problems, while
we will solve portfolio choice problems that are formulated as maxim-
imization problems. It is easy to convert from one to the other: simply
multiply the objective function by −1.
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In-class exercise: Kuhn-Tucker conditions
Choose risky portfolio proportions θ ∈ ℜN to
maximize µ′θ − γRθ

′V θ/2− γT (θ − θB)
′V (θ − θB)/2

subject to: (∀n = 1, ..., N )θn ≥ 0 (long only)

Assume that V is positive definite and that γR and γT are positive.

• Use the Kuhn-Tucker conditions to derive the solution of the problem
without the long-only constraint.

• Write down the Kuhn-Tucker conditions for the problem including
the long-only constraint.

• Solve the portfolio problem including the long-only constraint under
the assumption that the security returns are uncorrelated.

Recall the Kuhn-Tucker conditions:

∇f (x∗) = ∑
i∈E ∪ I λi∇gi(x

∗)
(∀i ∈ I)λi ≥ 0
λigi(x

∗) = 0
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A complete-markets choice problem
Given initial wealth w0,
choose state-contingent consumptions c1, ... cΩ, to
maximize ∑Ω

ω=1 πωu(cω)
st ∑Ω

ω=1 pωcω = w0

The objective is the von Neumann-Morgernstern utility function E[u(·)],
π is the vector of probabilities, and p is the vector of state prices. We can
also state this in terms of the state-price density (or stochastic discount
factor) ξω = pω/πω:

Given initial wealth w0,
choose state-contingent consumptions c1, ... cΩ, to
maximize E[u(cω)]
st E[ξωcω] = w0

K-T conditions: u′(c) = λξ.
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von Neumann-Morgenstern utility function E[u(·)]

• increasing (u′(c) > 0 suffices): prefers more to less
• strictly concave (u′′(c) < 0 suffices): risk averse

– Jensen’s inequality – prefers mean to a risky random payoff
– first-order conditions sufficient for an optimum

• absolute risk aversion: A(c) ≡ −u′′(c)/u′(c) aversion to absolute
gambles

• relative risk aversion: R(c) ≡ −cu′′(c)/u′(c) aversion to relative
gambles

• constant relative risk aversion (CRRA): c1−R/(1−R) or log(c)
• constant absolute risk aversion (CARA): − exp(−Ac)/A

• hyperbolic absolute risk aversion (HARA): (c − c0)
1−R/(1 − R),

log(c− c0), or CARA. (Note: includes CRRA: c0 = 0)
• a positive affine transform a + bu(c) where b > 0 gives the same

choices
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Arrow-Pratt risk aversion measures A(c) and R(c)

For “small” absolute gambles with E[ϵ] = 0, using a second-order Taylor
expansion, the break-even risk premium π solves

u(c) = [Eu(c + π + ε)] ≈ u(c) + u′(c)π +
1

2
u′′(c)var(ε)

which implies that

π ≈ A(c)
var(ε)

2
,

where A(c) ≡ −u′′(c)/u′(c) as defined in the previous slide.

Similarly, for “small” relative gambles with E[ϵ] = 0, we have that the
break-even risk premium π for which u(c) = E[u(c(1 + π + ε))] is
roughly π ≈ R(c)var(ε)/2, where R(c) ≡ −cu′′(c)/u′(c) as defined in
the previous slide.
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von Neumann-Morgenstern utility function (drawing pictures)

c

u
(c

)

Concave: the shaded set S ≡ {(c, u)|u < u(c)} below the graph is a
convex set: for x, y ∈ S and a ∈ [0, 1], ax + (1 − a)y ∈ S. For an
interior point c0 in the domain of u, (∃z)(∀c)(u(c) ≤ u(c0)+z(c−c0)).
If u is differentiable at c0, z = u′(c0).

For random c, let c0 = E[c]. Then, E[u(c)] ≤ E[u(c0)+(c−c0)u
′(c0)] =

u(c0) + (E[c] − c0)u
′(c0) = u(c0) (Jensen’s inequality). The agent is

risk averse.
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