Problem Set 6: One-shot approach FIN 539 Mathematical Finance P. Dybvig

1. State the Fundamental Theorem of Asset Pricing in words.

The following are equivalent:

- (i) Absence of riskless arbitrage
- (ii) Existence of a consistent positive linear pricing rule
- (iii) Existence of a hypothetical agent who prefers more to less and has an optimal choice
- 2. Assume our standard continuous-time model with (1) a single risky asset with constant expected return μ and constant local standard deviation of returns σ , and (2) a riskfree asset with constant risk-free rate r. Recall that the state-price density is $\xi_t = \exp((-r \kappa^2/2)t \kappa Z_t)$, where $\kappa = (\mu r)/\sigma$. Consider the one-shot choice problem for an agent with initial wealth w_0 and consumption only at the horizon T and utility function $u(c_T) = \log(c_T \bar{c})$ where the constant \bar{c} is the subsistence consumption.
- A. Write down the choice problem.

Choose
$$c_T$$
 to
maximize $E[u(c_T)]$
s.t. $E[\xi_T c_T] = w_0$

B. Write down the first-order condition and then write down optimal consumption as a function of ξ_T and the Lagrangian multiplier.

$$u'(c_T) = \lambda \xi_T$$

$$\frac{1}{c_T - \bar{c}} = \lambda \exp((-r - \kappa^2/2)T - \kappa Z_T)$$

$$c_T = \bar{c} + \frac{1}{\lambda \exp((-r - \kappa^2/2)T - \kappa Z_T)}$$

C. Solve for the wealth process w_t in terms of λ and Z_t . (Recall that for

t > s, $Z_t - Z_s$ is independent of the history and distributed normally with mean 0 and variance t - s. Also, recall that if X is distributed normally with mean a and variance b then $E[\exp(X)] = \exp(a + b/2)$.)

The valuation equation says that

$$w_t = \operatorname{E}_t \left[\frac{\xi_T}{\xi_t} c_T \right]$$

$$= \operatorname{E}_t \left[\frac{\exp((-r - \kappa^2/2)T - \kappa Z_T)}{\exp((-r - \kappa^2/2)t - \kappa Z_t)} \left(\bar{c} + \frac{1}{\lambda \exp((-r - \kappa^2/2)T - \kappa Z_T)} \right) \right]$$

$$= \bar{c} E_t \left[\exp((-r - \kappa^2/2)(T - t) - \kappa (Z_T - Z_t)) \right] + \frac{1}{\lambda} \exp((r + \kappa^2/2)t + \kappa Z_t)$$

$$= \bar{c} \exp(-r(T - t)) + \frac{1}{\lambda} \exp((r + \kappa^2/2)t + \kappa Z_t)$$

D. Solve for λ , and use this value to restate the wealth process.

From the budget constraint and the result in C, we have that $w_0 = \bar{c}e^{-rT} + 1/\lambda$, and therefore

$$\lambda = \frac{1}{w_0 - \bar{c}e^{-rT}}.$$

Substituting into the wealth process, we have

$$w_t = \bar{c} \exp(-r(T-t)) + (w_0 - \bar{c}e^{-rT}) \exp((r + \kappa^2/2)t + \kappa Z_t)$$

E. Solve for the portfolio allocation for the risky asset as a function of wealth and time.

Given there is no intermediate consumption, we can write the usual budget constraint as

$$dw_t = rw_t dt + \theta((\mu - r)dt + \sigma dZ_t)$$

and from our expression for wealth, we can compute

$$dw_t = (...)dt + (w_0 - \bar{c}e^{-rT}) \exp((r + \kappa^2/2)t + \kappa Z_t)\kappa dZ_t$$

(where the term (...) terms from the drift of w, direct dependence on t, and the Itô term)

Matching coefficients on dZ_t and then substituting in for w_t , we have that

$$\theta = (w_0 - \bar{c}e^{-rT}) \exp((r + \kappa^2/2)t + \kappa Z_t)\kappa/\sigma$$

= $(w_t - \bar{c}\exp(-r(T-t)))\kappa/\sigma$.

In this expression, $\bar{c}\exp(-r(T-t))$ is the amount of wealth at t needed to fund the minimum consumption \bar{c} , so the factor $(w_t - \bar{c}\exp(-r(T-t)))$ is the discretionary wealth beyond what is needed to meet minimum consumption.