Problem Set 6: One-shot approach FIN 539 Mathematical Finance P. Dybvig

- 1. State the Fundamental Theorem of Asset Pricing in words.
- 2. Assume our standard continuous-time model with (1) a single risky asset with constant expected return μ and constant local standard deviation of returns σ , and (2) a riskfree asset with constant risk-free rate r. Recall that the state-price density is $\xi_t = \exp((-r \kappa^2/2)t \kappa Z_t)$, where $\kappa = (\mu r)/\sigma$. Consider the one-shot choice problem for an agent with initial wealth W_0 and consumption only at the horizon T and utility function $u(c_T) = \log(c_T \bar{c})$ where the constant \bar{c} is the subsistence consumption.
- A. Write down the choice problem.
- B. Write down the first-order condition and then write down optimal consumption as a function of ξ_T and the Lagrangian multiplier λ .
- C. Solve for the wealth process w_t in terms of λ and Z_t . (Recall that for t > s, $Z_t Z_s$ is independent of the history and distributed normally with mean 0 and variance t s. Also, recall that if X is distributed normally with mean a and variance b then $E[\exp(X)] = \exp(a + b/2)$.)
- D. Solve for λ , and use this value to restate the wealth process.
- E. Solve for the portfolio allocation for the risky asset as a function of wealth and time.