FIN 539 MATHEMATICAL FINANCE Lecture 2: Dynamic Programming Approach

Philip H. Dybvig Washington University in Saint Louis

Copyright © Philip H. Dybvig 2021, 2024

Dynamic Programming Approach

The idea of dynamic programming is to reduce the optimization into a series of single-period optimization problems (or optimization problems at a point of time in a continuous-time model). Optimal decisions for the future are given, and are encoded in the "continuation value" as a function of what happens this period. The continuation value (or the "value function") is a function of the "state variables" that are important for determining what happens going forward. State variables could include such variables as wealth, time, and current interest rate or mean return on the stock. We use the first-order conditions from the single-period problem to solve for the value function and strategy as a function of the state variables.

The art in dynamic programming is related to the state variables. Solving the problem is at least easier (and perhaps only possible) if we have the correct state variables. Also, in general, the more state variables there are, the harder the problem is to solve, so it usually makes sense to make some strong assumptions to keep the number of state variables low.

A discrete-time dynamic portfolio problem

Given w_0 at time 0, choose adapted investment θ_s , consumption $c_s \ge 0$, and wealth w_s to maximize $E[\sum_{s=0}^{T-1} \frac{1}{(1+\rho)^s} u(c_s) + \frac{1}{(1+\rho)^T} b(w_T)]$ subject to $(\forall s) w_{s+1} = (w_s - c_s)(1 + r_f) + \theta_s(r_{s+1} - r_f)$ (budget constraint) and $(\forall s) w_s \ge 0$ (nonnegative wealth).

 w_s : wealth at time s before consumption

 c_s : consumption at time s

 w_T : terminal wealth or bequest

 $\sum_{s=0}^{T-1} \frac{1}{(1+\rho)^s} u(c_t) + \frac{1}{(1+\rho)^T} b(w_T)$ time-separable von Neumann-Morgenstern utility function

 $u(c_s)$: felicity function (also called utility function)

 ρ : pure rate of time discount

 $b(w_T)$: utility of the bequest

 r_f : riskfree rate

 r_s : random rate of return on the risky asset from s-1 to s

Possible variations

In the previous page, if there is no preference for consumption over time $(u(c) \equiv 0 \text{ and the } c_s \equiv 0$'s are not choice variables), this is a *terminal* horizon problem, which could be a useful model for saving for retirement or a nuclear decommissioning trust. If we include consumption c_s over time, with or without the bequest, this is a *consumption withdrawal* problem. If $T = \infty$, we do not have the term $b(w_T)$ and we call this an *infinite-horizon* model. Infinite-horizon problems can be easier to solve than finite horizon problems because the optimal portfolio does not depend on how much time is left.

If we have cash flows that must be met over time, these liabilities are included in the budget constraint and we would call this an asset-liability management (ALM) problem. ALM problems are common in defined-benefit retirement plans, insurance, and should be important for university endowments and other settings. We could also account for inflows over time, e.g. from salary and wages, within the budget constraint.

Dynamic programming: value function V(w, t)

In dynamic programming, the value function gives the value of continuing as a function of how things stand at a point in time. For this problem, the value function V(w, t) is the optimized value of the objective function of the continuation problem:

Given $w_t = w$ at time t, choose adapted investment θ_s , consumption $c_s \ge 0$, and wealth w_s to maximize $\mathbb{E}[\sum_{s=t}^{T-1} \frac{1}{(1+\rho)^{s-t}} u(c_s) + \frac{1}{(1+\rho)^{T-t}} b(w_T)]$ subject to $(\forall s) w_{s+1} = (w_s - c_s)(1 + r_f) + \theta_s(r_{s+1} - r_f)$ (budget constraint) and $(\forall s) w_s \ge 0$ (nonnegative wealth).

We condition only on *state variables* w and t that matter going forward. If we include too many variables, maybe it is possible to prove that the unneeded ones don't matter, but it probably requires more work. If $T = \infty$, V(w, t) = V(w) and t is not a state variable since the continuation problem is the same at all t and depends only on the starting wealth.

Dynamic programming equation (Bellman equation^{\perp})

Assume returns are i.i.d. in the problem two slides previous, and that V(w,t) is the value function before consuming at t. Then the Bellman equation is:

$$V(w_t, t) = \max_{c_t, \theta_t} \left\{ u(c_t) + \frac{\mathrm{E}[V((w_t - c_t)(1 + r_f) + \theta_t(r_{t+1} - r_f), t + 1)]}{1 + \rho} \right\}$$

First-order conditions:

$$u'(c_t^*) = \frac{E[(1+r_f)V'_w((w_t - c_t^*)(1+r_f) + \theta_t^*(r_{t+1} - r_f), t+1)]}{1+\rho}$$

$$E[(r_{t+1} - r_f)V'_w((w_t - c_t^*)(1+r_f) + \theta_t^*(r_{t+1} - r_f), t+1)] = 0$$

$$V(w_t, t) = u(c_t^*) + \frac{E[V((w_t - c_t^*)(1+r_f) + \theta_t^*(r_{t+1} - r_f), t+1)]}{1+\rho}$$

Hopefully, this seems natural or at least plausible that we can look at the decision now in isolation given the value of continuing in different contingencies. We will derive this using martingale tools for the continuous case, and almost the same derivation works for this case.

¹Some people tack on other names, for example, Hamilton-Jacoby-Bellman (HJB) equation.

Continuous-time dynamic portfolio problem (single risky asset)

Given w_0 at time 0, choose adapted risky investment θ_s , consumption $c_s \ge 0$, and wealth w_s to maximize $\mathbb{E}[\int_{s=0}^T e^{-\rho s} u(c_s) ds + e^{-\rho T} b(w_T)]$ subject to: $(\forall s)(dw_s = rw_s ds + \theta_s((\mu - r)ds + \sigma dZ_s) - c_s ds)$ $(\forall s)(w_s \ge 0)$

In this continuous-time problem, w_0 is initial wealth, θ_s is the portfolio weight in wealth units, c_s is the consumption process, $u(\cdot)$ is the felicity function (also called utility function), $b(w_T)$ is the contribution to utility of the bequest w_T , ρ is the pure rate of time discount, r is the riskfree rate, μ is the mean return on the risky asset, dZ_s is the underlying noise in the risky asset, and σ^2 is the local variance of the risky asset. If $T = \infty$ (an infinite-horizon problem), we exclude the bequest term $b(\cdot)$, and for a terminal horizon problem we exclude consumption choice variables (c_s 's) and the integral with the utility $u(c_s)$.

Value function V(w,t)

For our continuous-time example, the value function V(w,t) is the optimized objective function of the problem

Given $w_t = w$ at time t,

choose adapted risky investment quantities θ_s , consumption $c_s \ge 0$, and wealth w_s to

maximize $E[\int_{s=t}^{T} e^{-\rho(s-t)}u(c_s)ds + e^{-\rho(T-t)}b(w_T)]$

subject to:

 $(\forall s)(dw_s=rw_sds+\theta_s((\mu-r)ds+\sigma dZ_s)-c_sds),$ and $(\forall s)(w_s\geq 0)$

The state variables w and t summarize everything we need to know about the past to solve the optimization problem going forward. We could also consider a richer choice problem with more state variables (e.g. the current interest rate, current stock return volatility, or estimated future liabilities in an ALM setting). Adding state variables may make the optimization more realistic, but it also can make it harder to estimate the parameters and solve.

Value process M_t

We will follow Fleming and Richel and use the "martingale approach" to deriving the Bellman equation. Given the value function V(w,t) (perhaps unknown for now), define

$$M_t \equiv \int_{s=0}^t e^{-\rho s} u(c_s) ds + e^{-\rho t} V(w_t, t).$$

For any candidate feasible strategy, this is the conditional expectation of the realized value, given information at time t, of following the candidate strategy until t then switching to the optimal strategy. The integral in the definition is the value of what has already happened, and the final term is the value of what is in the future.

Value process M_t : martingale given the optimal strategy

Recall that a stochastic process M_t is called a *martingale* if it doesn't change on average, so for s < t, $E_s[M_t] = M_s$. Conditional expectations are martingales by the law of iterated expectations. Let $M_t \equiv E_t[X]$ for some random variable X. Then $E_s[M_t] = E_s[E_t[X]] = E_s[X] = M_s$.

If the candidate strategy is optimal, following the candidate strategy until t then switching to the optimal strategy means following the optimal strategy all the time. Therefore, M_t is the conditional expectation at tof following the optimal strategy, and therefore a martingale.

Value process M_t : supermartingale given any strategy

Recall that a stochastic process M_t is called a *supermartingale* if it never increases on average, so for s < t, $E_s[M_t] \leq M_s$. If we are following an candidate strategy, M_t defined in the previous slide may be a supermartingale and is only a martingale if the strategy is optimal. Note that a martingale is a supermartingale; we can call a supermartingale that is not a martingale a *strict supermartingale*.

Given any candidate strategy, recall that M_t is the expected value given information at time t of following the candidate strategy up until time t and then switching to the optimal strategy from t onwards. Given the optimal strategy, changes in M_t only reflect good or bad luck and on average are zero. However, for a sub-optimal strategy, as t increases, changes in M_t reflect both good or bad luck and the impact of following a sub-optimal strategy for a longer time. Therefore, for s < t, the decline $E[M_s] - E[M_t]$ is the loss in utility terms of irreversible mistakes made between times s and t.

Value process M_t : to the Bellman equation

 M_t will be an Itô process $(dM_t = a_t dt + b_t dZ_t$ for some random processes a_t and b_t). Then, if M_t is a martingale, the drift $a_t = 0$. If it is a supermartingale, the drift $a_t \leq 0$. Therefore, the optimal strategy maximizes the drift, and the maximized drift is zero. Therefore, we have

 $\max_{\theta_t, c_t} \operatorname{drift}(M_t) = 0,$

By Itô's lemma and the formula for dw_t from the constraint,

$$dM = e^{-\rho t} (u(c)dt + (V_t - \rho V(w, t))dt + V_w(w, t)(rwdt) + \theta((\mu - r)dt + \sigma dZ) - cdt) + \frac{\theta^2 \sigma^2}{2} V_{ww} dt),$$

and therefore we have the Bellman equation

$$\max_{\theta,c} \left(u(c) + V_t - \rho V + (rw + \theta(\mu - r) - c)V_w + \frac{\theta^2 \sigma^2}{2} V_{ww} \right) = 0.$$

Mini math review: univariate Itô's lemma

Let $H : \Re \times [0,T] \to \Re$ with continuous partial derivatives $H_x(x,t)$, $H_{xx}(x,t)$, and $H_t(x,t)$. Let $dX_t = g(t)dt + G(t)dZ_t$, where X_t is a 1dimensional process and Z_t is a 1-dimensional standard Wiener process. Then $Y_t \equiv H(X_t,t)$ is an Itô process with stochastic differential

$$dY_t = H_t dt + H_x dX + \frac{1}{2}G^2 H_{xx} dt$$

Towards a solution: optimal c and θ

Taking the first-order conditions for the maximization in the Bellman equation with respect to c and θ , we have that

$$u'(c) = V_w$$

and

$$(\mu - r)V_w + \frac{2\sigma^2\theta}{2}V_{ww} = 0.$$

Therefore, the optimal choices are

$$c^* = I(V_w)$$

where $I(\cdot)$ is the inverse of the marginal utility function, and

$$\theta^* = -\frac{\mu - r}{\sigma^2} \frac{V_w}{V_{ww}}.$$

Bellman equation with optimized values

Recall that the Bellman equation is

$$\max_{\theta,c} \left(u(c) + V_t - \rho V + (rw + \theta(\mu - r) - c)V_w + \frac{\theta^2 \sigma^2}{2} V_{ww} \right) = 0.$$

Substituting in the optimal consumption c^* and optimal portfolio θ^* , we have

$$u(I(V_w)) + V_t - \rho V + (rw - I(V_w))V_w - \frac{(\mu - r)^2}{2\sigma^2} \frac{(V_w)^2}{V_{ww}} = 0.$$

Defining the dual function $\tilde{u}(z)\equiv \max_{c}u(c)-zc=u(I(z))-zI(z)$,

$$\tilde{u}(V_w) + V_t - \rho V + rwV_w - \frac{(\mu - r)^2}{2\sigma^2} \frac{(V_w)^2}{V_{ww}} = 0.$$

We can solve this subject to a boundary conditions at maturity and for large and small wealth. For example, if T is finite, $V(w_T, T) = b(w_T)$.

Exploiting homotheticity

Consider the infinite horizon problem with $u(c) = \log(c)$ (and no b(w) because of the infinite horizon). Then $V(w_0)$ is the optimized value of:

Given $w_0 > 0$ at time 0, choose adapted investment θ_s , consumption c_s and wealth w_s to maximize $\mathbb{E}[\int_{s=0}^{\infty} e^{-\rho s} \log(c_s) ds]$ subject to: $(\forall s)(dw_s = rw_s ds + \theta_s((\mu - r)ds + \sigma dZ_s) - c_s ds)$ $(\forall s)(w_s \ge 0)$

Now letting $\hat{c}_s \equiv c_s/w_0$, $\hat{w}_s \equiv w_s/w_0$, and $\hat{\theta}_s \equiv \theta_s/w_0$, this becomes

Given $w_0 > 0$ at time 0 and therefore $\hat{w}_0 = 1$, choose adapted investment $\hat{\theta}_s$ consumption \hat{c}_s , and wealth \hat{w}_s to maximize $E[\int_{s=0}^{\infty} e^{-\rho s} \log(w_0 \hat{c}_s) ds]$ subject to:

$$\begin{aligned} (\forall s)(d\hat{w}_s &= r\hat{w}_s ds + \hat{\theta}_s((\mu - r)ds + \sigma dZ_s) - \hat{c}_s ds) \\ (\forall s)(\hat{w}_s &\geq 0) \end{aligned}$$

Exploiting homotheticity...continued

Now $\log(w_0 \hat{c}_s) = \log(w_0) + \log(\hat{c}_s)$. Therefore, the objective function of the second problem can be rewritten as

$$\int_{s=0}^{\infty} e^{-\rho s} \log(w_0) ds + \mathbb{E}[\int_{s=0}^{\infty} e^{-\rho s} \log(\hat{c}_s) ds] \\ = \log(w_0) / \rho + \mathbb{E}[\int_{s=0}^{\infty} e^{-\rho s} \log(\hat{c}_s) ds].$$

Since w_0 appears only in the leading constant term in the objective (and not in the constraints), the optimal choice of \hat{c}_s , $\hat{\theta}_s$, and \hat{w}_s does not depend on w_0 . Therefore, the value of the problem can be written as $V(w) = \log(w)/\rho + v$, where v is the maximized value of $E[\int_{s=0}^{\infty} e^{-\rho s} \log(\hat{c}_s) ds]$. The value function does not depend on time since the problem has the same form looking forward from any t, and in particular there is the same amount of time to the horizon for all t.

Optimal solution: log utility, infinite horizon

We have derived that $V(w) = \log(w)/\rho + v$, and therefore $V_t = 0$, $V_w = 1/(\rho w)$, and $V_{ww} = -1/(\rho w^2)$. Furthermore, $\tilde{u}(z) \equiv \max_c u(c) - zc = -\log(z) - 1$. Therefore, the Bellman equation (with optimized values) is

$$0 = -\log(V_w) - 1 + V_t - \rho V + rwV_w - \frac{(\mu - r)^2}{2\sigma^2} \frac{(V_w)^2}{V_{ww}}$$

= $-\log\left(\frac{1}{\rho w}\right) - 1 + \frac{rw}{\rho w} - \rho(\frac{\log(w)}{\rho} + v) - \frac{(\mu - r)^2}{2\sigma^2} \frac{(1/(\rho w))^2}{-1/(\rho w^2)}$
= $\log(\rho) - 1 + r/\rho - \rho v + (\mu - r)^2/(2\sigma^2\rho)$

$$v = \frac{\log(\rho)}{\rho} + \frac{r - \rho}{\rho^2} + \frac{(\mu - r)^2}{2\sigma^2 \rho^2}$$

Log utility portfolio choice, consumption and portfolio choice

We can also compute the optimal consumption and portfolio choice in the infinite horizon case.

$$c^* = I(V_w) = \rho w$$
$$\theta^* = -\frac{\mu - r}{\sigma^2} \frac{V_w}{V_{ww}} = \frac{\mu - r}{\sigma^2} w$$

We actually do not need to know the value of v to be able to compute c^* and θ^* . The risky investment is the proportion $(\mu - r)/\sigma^2$ of wealth, and consumption rate is the proportion ρ of wealth. We can use a similar homogeneity argument to solve a finite-horizon problem with $u(c) = K_0 \log(c)$ and $b(w) = K_1 \log(w)$, where K_0 and K_1 are both nonnegative and not both 0. In the finite-horizon problem with log utility, the risky investment is the same proportion $(\mu - r)/\sigma^2$ of wealth, and the optimal consumption rate is a deterministic proportion of wealth that depends on the time to maturity.