Problem Set 4: Multi-asset portfolio problem
FIN 539 Mathematical Finance
P. Dybvig

1. Homotheticity Consider the \log felicity (or utility) function $u(c)=$ $\log (c)$. Then we will study variations of the following multi-asset optimization problem:

Given w_{0},
choose adapted risky asset proportions θ_{t}, consumption c_{t}, and wealth w_{t}, to maximize $E\left[\int_{t=0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t\right]$ (expected utility of lifetime consumption)
subject to:
$d w_{t}=r w_{t} d t+w_{t} \theta_{t}^{\prime}\left((\mu-r \mathbf{1}) d t+\Gamma d Z_{t}\right)-c_{t} d t$ (budget constraint)
$w_{t} \geq 0$ (no borrowing)
The choice variables are three processes: the vector of risky asset proportions $\theta_{t} \in \Re^{N}$, real-valued consumption c_{t}, and real-valued wealth w_{t}. The constant ρ is the pure rate of time discount, the constant r is the instantaneous riskfree rate of interest, $\mu \in \Re^{N}$ is the constant vector of mean risky asset returns, Γ is the constant $N \times k$ matrix of loadings of the returns on the different risks, and $\mathbf{1}$ is the N-vector of 1 's. Assume the local covariance $\Gamma \Gamma^{\prime}$ of returns is positive definite, and that there is at least one asset n with $\mu_{n}>r$.
A. Show that the form of the value function for this problem is $V(w)=$ $v+\log (w) / \rho$ for some constant v.
B. Does the result in part A hold (perhaps for a different constant v) if we add the constraint

$$
(\forall i, t)\left(0 \leq \theta_{i t} \leq K_{i}\right)
$$

where each $K_{i}>0$ is a given constant? Explain why or why not. (If not, it suffices to show where the usual argument breaks down.)
C. Does the result in part A hold (perhaps for a different constant v) if we
add the constraint

$$
(\forall t)\left(0 \leq \theta_{t} \leq w_{t} K\right)
$$

where $K>0$ is a given constant. Explain why or why not. (If not, it suffices to show that the usual argument breaks down.)
2. Bellman Equation Consider the optimization problem in Problem 1, without either constraint described in Part B or Part C. (Note: this problem can be solved even if you did not solve Problem 1.)
A. Write down the process M_{t} for this problem.
B. What does M_{t} represent given the optimal policies for portfolio, consumption, and wealth? What does M_{t} represent given suboptimal policies? For $t<s$, what is $E\left[M_{t}\right]-E\left[M_{s}\right]$?
C. Derive the Bellman equation for this problem.
D. Solve for optimal c_{t} and θ_{t} in terms of derivatives of V.
E. From Problem 1, we can write the value function in the form $V(w)=$ $v+\log (w) / \rho$. Using this formula, solve for the optimal c_{t} and θ_{t} in terms of w_{t} and the parameters.
F. Substitute the optimal portfolio and consumption policies into the Bellman equation, and solve the optimized Bellman equation for v.

