Problem Set 1: Kuhn-Tucker conditions FIN 539 Mathematical Finance P. Dybvig

1. A complete-markets portfolio choice problem.

Given initial wealth w_0 , choose state-contingent consumptions $c_1, \ldots c_{\Omega}$, to maximize $\mathbf{E}[u(c_{\omega})]$ (objective function) st $\mathbf{E}[\xi_{\omega}c_{\omega}] = w_0$ (budget constraint) $(\forall \omega)c_{\omega} \geq \bar{c}$ (consumption floor).

In this problem, E[u(c)] is the von Neumann-Morgenstern utility function with u'(c) > 0 and u''(c) < 0, $\omega = 1, ..., \Omega$ are the states of nature, ξ is the vector of state-price densities (or stochastic discount factors), and \bar{c} is an exogenously-imposed floor on consumption.

A. What are the Kuhn-Tucker (KT) conditions for the problem?

The equality constraint can be written as g(c) = 0 where $g(c) = E[\xi_{\omega}c_{\omega}] - w_0$, and the inequality constraints can be written as $g_{\omega}(c) \leq 0$, where $g_{\omega}(c) = \bar{c} - c_{\omega}$. Therefore, the KT conditions are

$$u'(c_{\omega}) = \lambda \xi_{\omega} - \lambda_{\omega}$$
$$(\forall \omega) \lambda_{\omega} \ge 0$$
$$(\forall \omega) (\bar{c} - c_{\omega}) \lambda_{\omega} = 0$$

B. Show that the solution to the Kuhn-Tucker conditions is given by

$$c_{\omega} = \max(I(\lambda\xi_{\omega}), \bar{c}),$$

where I(z) is the inverse function of the marginal utility u'(c) and λ is the Lagrangian multiplier on the budget constraint.

First, consider states ω in which $I(\lambda\xi_{\omega}) < \bar{c}$. In these states, we must have $\lambda_{\omega} \neq 0$, since $\lambda_{\omega} = 0$ would imply $c_{\omega} = I(\lambda\xi_{\omega}) < \bar{c}$, which is infeasible. By complementarity slackness $(\bar{c} - c_{\omega})\lambda_{\omega} = 0$, $\lambda_{\omega} \neq 0$ implies that $c_{\omega} = \bar{c}$, so we have that $I(\lambda\xi_{\omega}) < \bar{c}$ implies that $c_{\omega} = \bar{c}$.

Next, consider states ω in which $I(\lambda\xi_{\omega}) \geq \bar{c}$. We show that in these states, $\lambda_{\omega} = 0$. Suppose not. By the KT conditions, $\lambda_{\omega} \geq 0$ so we have $\lambda_{\omega} > 0$. Since $u'(c_{\omega}) = \lambda\xi_{\omega} - \lambda_{\omega}$, $c_{\omega} = I(\lambda\xi_{\omega} - \lambda_{\omega}) > I(\lambda\xi_{\omega}) \geq \bar{c}$ (where we used $\lambda > 0$, $I(\cdot)$ decreasing because $u'(\cdot)$ decreasing, and the maintained assumption in this paragraph that $I(\lambda\xi_{\omega}) \geq \bar{c}$). However, $\lambda_{\omega} > 0$ and complementarity slackness $(\bar{c} - c_{\omega})\lambda_{\omega} = 0$ imply that $c_{\omega} = \bar{c}$. Therefore, we have shown that if $I(\lambda\xi_{\omega}) \geq \bar{c}$, then $c_{\omega} = I(\lambda\xi_{\omega})$.

Combining the two results, we have that

$$c_{\omega} = \begin{cases} \bar{c} & \text{if } I(\lambda\xi_{\omega}) \leq \bar{c} \\ I(\lambda\xi_{\omega}) & \text{otherwise} \end{cases}$$
$$= \max(\bar{c}, I(\lambda\xi_{\omega}))$$

C. Suppose that $u(c) = \sqrt{k_1^2 + 4k_2c} + k_1 \log(\sqrt{k_1^2 + 4k_2c} - k_1)$; this is a special case of GOBI preferences.¹ Then show that

$$I(z) = \frac{k_1}{z} + \frac{k_2}{z^2}.$$

$$z = u'(c)$$

$$= \frac{2k_2}{\sqrt{k_1^2 + 4k_2c}} \left(1 + \frac{k_1}{\sqrt{k_1^2 + 4k_2c} - k_1} \right)$$

$$= \frac{2k_2}{\sqrt{k_1^2 + 4k_2c}} \left(\frac{\sqrt{k_1^2 + 4k_2c} - k_1 + k_1}{\sqrt{k_1^2 + 4k_2c} - k_1} \right)$$

¹Dybvig, Philip H., and Fang Liu, 2018, On Investor Preferences and Mutual Fund Separation, Journal of Economic Theory 174, 224–260.

$$= \frac{2k_2}{\sqrt{k_1^2 + 4k_2c} - k_1}$$

Therefore,

$$\sqrt{k_1^2 + 4k_2c} - k_1 = \frac{2k_2}{z}$$
$$\sqrt{k_1^2 + 4k_2c} = \frac{2k_2}{z} + k_1$$
$$k_1^2 + 4k_2c = \frac{4k_2^2}{z^2} + \frac{4k_1k_2}{z} + k_1^2$$
$$c = \frac{k_1}{z} + \frac{k_2}{z^2}$$

D. Given the choice of the utility in part C, write down the form of consumption.

$$c_{\omega} = \max\left(\bar{c}, \frac{k_1}{\lambda\xi_{\omega}} + \frac{k_2}{(\lambda\xi_{\omega})^2}\right)$$

E. Write down the equation that should be solved for the Lagrange multiplier. The budget constraint:

$$\mathbf{E}\left[\xi_{\omega} \max\left(\bar{c}, \frac{k_1}{\lambda\xi_{\omega}} + \frac{k_2}{(\lambda\xi_{\omega})^2}\right)\right] = w_0$$