
Mathematical Finance Mini Exam Answers, Spring A 2021
P. Dybvig
March 20, 2021

This is a closed-book exam: you may not use any books, notes, or electronic
devices (calculators, headphones, laptops, etc.), except for the Zoom session
for proctoring (camera must be on), reading the exam, asking me questions,
and for submitting your exam. Mark your answers on paper and submit
pictures of your answer sheets in Canvas.

There are no trick questions on the exam, but you should read the questions
carefully.

PLEDGE (required)

The work on this exam will be mine alone, and I will conform with the rules
of the exam and the code of conduct of the Olin Business School.

Signed name

Good luck!

I. Short answer (30 points).

A. State in words the Fundamental Theorem of Asset Pricing (FTAP).

The following are equivalent:

a. Absence of Riskless Arbitrage
b. Existence of a Consistent Positive Linear Pricing Rule
c. Existence of a hypothetical agent who prefers more to less and has an
optimal choice

B. What is the difference between priced risk in the Capital Asset Pricing
Model (CAPM) and the APT (Arbitrage Pricing Theory)?

In the CAPM, only risk in the market portfolio is priced, while in the APT
any common risk across securities can be priced.



C. If a client gives you a covariance matrix of returns to use that has mostly
positive eigenvalues but a few negative ones, is that a problem? Why?

Yes, it is a problem because it means the covariance matrix is not positive
semi-definite, i.e., some portfolios have negative variance. It is impossible to
simulate from such a matrix (without using complex returns which make no
sense) and the second-order condition for mean-variance optimization fails.

II. Homotheticity (30 points) Consider a continuous-time portfolio choice
problem with log utility u(WT ) = e−ρT log(WT ) for consumption at the ter-
minal horizon T > 0. There is a constant riskfree rate r > 0 and a single
risky asset with expected return µ > r per unit time and local variance σ2

per unit time. Then the choice problem is

Given w0,
choose adapted θs and ws to
maximize E[e−ρT log(wT )]
s.t. (∀s)(dws = rwsdt+ θs((µ− r)ds+ σdZs))
(∀s)(ws ≥ 0)

A. Write down the choice problem whose optimized value is the objective
function V (w, t).

Given w,
choose adapted θs and ws to
maximize E[e−ρ(T−t) log(wT−t)]
s.t. w0 = w
(∀s)(dws = rwsds+ θs((µ− r)ds+ σdZs))
(∀s)(ws ≥ 0)

B. Prove that there exists some function v(·) such that V (w, t) = v(t) +
e−ρ(T−t) log(w).

Consider the transformed choice variables θ̂s ≡ θs/w and ŵs ≡ ws/w. Then
we can rewrite the problem in part A as:

Given w,
choose adapted θ̂s and ŵs to
maximize E[e−ρ(T−t) log(wtŵT−t)]
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s.t. w0 = w
(∀s)(dŵs = rŵsds+ θ̂s((µ− r)ds+ σdZs))
(∀s)(ŵs ≥ 0)

The constraints are the same independent of w, and the objective function
can be written in the form E[e−ρ(T−t) log(ŵT−t)] + e−ρ(T−t) log(w). Adding
the constant e−ρ(T−t) log(w) does not change the optimal choice of θ̂ and ŵ.
Calling the optimized value of the first term v(t), we have that the value is
v(t) + e−ρ(T−t) log(w).

C. Would the result in part B still be true (perhaps for a different function
v(t)) if we added the constraint (∀s)θs ≤ θ̄ws for some positive constant θ̄?
Explain why it is still true or why the proof fails.

Yes, because the constraint can be expressed as (∀s)θ̂s ≤ θ̄ŵs, which only
involves the transformed choice variables and does not depend on w.

III. Bellman equation (40 points) Consider the portfolio choice problem from
question II. (Note: you do not have to solve Problem II first to solve this
problem.)

Given w0 at time 0,
choose adapted θt and wt to
maximize E[e−ρT log(WT )]
s.t. (∀t)(dwt = rwtdt+ θt((µ− r)dt+ σdZt))
(∀t)(wt ≥ 0)

A. Write down the process Mt for this problem.

Mt = e−ρtV (wt, t)

(There is no consumption withdrawal, so we have no integral from consump-
tion.)

B. What does Mt represent given the optimal policies for the portfolio and
wealth?

the conditional expected utility of the optimal strategy as of time t
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What does Mt represent given an arbitrary policy?

the conditional expected utility as of time t of following the arbitrary policy
until time t and the optimal policy from then on

For t > s, what is E[Ms]− E[Mt]?

the loss in value of the objective function due to mistakes made between time
s and time t

C. Derive the Bellman equation for this problem.

E[dMt]

e−ρtdt
= Vt − ρV + Vw

E[dw]

dt
+

1

2

E[dw2]

dt
Vww

= Vt − ρV + (rw + θ(µ− r))Vw +
θ2σ2

2
Vww

The Bellman equation says that the maximum over the controls of E[dMt]
equals zero, so the Bellman equation is

0 = max
θ

(
Vt − ρV + (rw + θ(µ− r))Vw +

θ2σ2

2
Vww

)

D. Solve for optimal θt in terms of derivatives of V .

The terms that depend on θ are θ(µ − r)Vw + θ2σ2Vww/2. Differentiating
with respect to θ, we have the first-order condition

(µ− r)Vw + θσ2Vww = 0,

which implies the optimal portfolio is

θ∗ =
µ− r
σ2

Vw
−Vww

E. In question II, it is proven that the value function of this problem has the
form V (wt, t) = v(t) + e−ρ(T−t) log(wt). Given this information, derive the
optimal θ as a function of w.
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Given the form of V (wt, t), we have that

V = v(t) + e−ρ(T−t) log(w)

Vw = e−ρ(T−t)
1

w

Vww = e−ρ(T−t)
−1

w2

Therefore,

θ∗ =
µ− r
σ2

1/w

−(−1/w2)

=
µ− r
σ2

w

IV. Challenger (10 bonus points) Consider our standard infinite-horizon prob-
lem with fixed coefficients and constant relative risk aversion R. Fix R,
0 < R < 1. Then the problem is

Given w0 at time 0,
choose adapted θt, ct, and wt to

maximize E
[∫∞
t=0 e

−ρt c1−R
t

1−R

]
s.t. (∀t)(dwt = rwtdt+ θt((µ− r)dt+ σdZt))− ctdt
(∀t)(wt ≥ 0)

For what values of the parameters µ, σ, r, R, and ρ does the problem have
a solution? Explain the economics of your result; prove your claim for full
credit. (This is hard: don’t work on this problem until you have completed
and checked everything else.)
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Some formulas that might be useful

univariate Itô’s lemma:

Let dXt = atdt+σtdZt where Z is a standard Wiener process, and let f(X, t)
have continuous partial derivatives fX , fXX , and ft. Then

df(Xt, t) = fX(Xt, t)(atdt+ σtdZt) + ft(Xt, t)dt+
σ2
t

2
fXX(Xt, t)dt.

multivariate Itô’s lemma:

LetH : <d×[0, T ]→ < with continuous partial derivativesHx(x, t), Hxx(x, t),
and Ht(x, t). Let dXt = g(t)dt+G(t)dZt, where Zt is an m-dimentional stan-
dard Wiener process. Then Yt ≡ H(Xt, t) is an Itô process with stochastic
differential

dY = Htdt+HxdX +
1

2
tr(GG′Hxx)dt

Note: if H takes values in <K , we can apply the result elementwise.

Black-Scholes differential equation:

0 = −rO +Ot + rSOS +
σ2

2
S2OSS,

State-price density (stochastic discount factor) if markets are complete:

Let security 0 have a riskless mean return r and any other asset n = 1, ..., N
has re-invested risky return dSnt/Snt = µnttdt+ γntdZt.

dξ = −rdt− (µ− r1)′(Γ′)−1dZt

where

Γ = (γ1|γ2| . . . |γN)′.
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Univariate state-price density:

dξt/ξt = −rdt− κdZt,

where κ ≡ (µ− r)/σ, and with constant coefficients and taking ξ0 = 1 wlog,
we have

ξt = ξ0 exp((−r − κ2/2)t− κZt),

Normal moment generating function:

If x ∼ N(m, s), E[ex] = em+s2/2

Arrow-Pratt coefficient of absolute risk aversion:

−u′′(c)
u′(c)

Arrow-Pratt coefficient of relative risk aversion:

−cu′′(c)
u′(c)

Constant Absolute Risk Aversion (CARA) utility with risk aversion A > 0:

u(c) = −exp(−Ac)
A

Constant Relative Risk Aversion (CRRA) utility with risk aversion R > 0:

u(c) =

{
c1−R

1−R for R 6= 1

log(c) for R = 1

Kuhn-Tucker conditions:

For the optimization model
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Choose x ∈ <N to
maximize f(x)
subject to (∀i ∈ E)gi(x) = 0, and

(∀i ∈ I)gi(x) ≤ 0,

the Kuhn-Tucker conditions are

∇f(x∗) =
∑
i∈E
⋃
I λi∇gi(x∗)

(∀i ∈ I)λi ≥ 0
λigi(x

∗) = 0
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