Problem Set 2: Bellman Preliminaries and Covariance Matrices FIN 539 Mathematical Finance P. Dybvig

Avantika and Jiaen will discuss this homework at the TA session, time TBA.

1. **Bellman Equation: preliminaries** This problem does some preliminary calculations for a problem we will solve in next week's homework.

Consider the HARA (Hyperbolic Absolute Risk Aversion) felicity (or utility) function $u(c) = (c - \underline{c})^{1-R}/(1-R)$, where \underline{c} is the subsistence consumption (the minimal consumption needed to survive) and R > 0, $R \neq 1$, is the relative risk aversion for the increase of consumption above the subsistence level. Then we will study the following optimization problem:

Given w_0 ,

choose portfolio θ_t , consumption c_t , and wealth w_t to maximize $E[\int_{t=0}^{\infty} e^{-\rho t} u(c_t) dt]$ (expected utility of lifetime consumption) subject to:

$$dw_t = rw_t dt + \theta_t((\mu - r)dt + \sigma dZ_t) - c_t dt \text{ (budget constraint)}$$

$$(\exists K \in \Re)(\forall t)w_t \ge -K \text{ (limited borrowing)}$$

A. The Bellman equation is derived from dM_t for a process M_t defined in class which gives the realized value of the objective at time t given we are following a possibly suboptimal strategy until time t and then switching to the optimal strategy from then on. One thing we will have to compute in deriving dM_t is $d(e^{-\rho t}V(w_t))$, where $V(w_t)$ is the value function (as yet unknown, but assumed to be twice continuously differentiable) and dw_t is given by the budget constraint in the problem above. Use Itô's lemma to derive $d((e^{-\rho t}V(w_t)))$.

Let
$$f(w_t, t) \equiv e^{-\rho t} V(w_t)$$
. Then

$$d((e^{-\rho t}V(w_t))) = df(w_t, t)$$

$$= f_w dw_t + f_t dt + \frac{1}{2} f_{ww} (dw_t)^2$$

$$= (rw_t dt + \theta_t ((\mu - r)dt + \sigma dZ_t) - c_t dt)e^{-\rho t}V_w$$

$$-\rho e^{-\rho t}Vdt + \frac{\theta_t^2\sigma^2}{2}e^{-\rho t}V_{ww}dt$$

B. Another term in deriving dM_t comes from taking a derivative of an integral with respect to parameters. This is ordinary calculus (Leibniz' rule), and the integral is done statewise. Compute $d(\int_{s=0}^{t} e^{-\rho s} u(c_s) ds)/dt$.

Only the upper limit of the integral depends on t, so the derivative is the derivative (=1) of the upper limit with respect to t times the value of the integrand at the upper limit. Therefore, we have

$$d(\int_{s=0}^{t} e^{-\rho s} u(c_s) ds) = e^{-\rho t} u(c_t) dt$$

C. Optimization of c at a point of time maximizes an objective function that equals $u(c) - cV_w$ (where $u(c) = (c - c)^{1-R}/(1-R)$) plus other terms that do not depend on c. Solve for the optimal c, and the maximized value of $u(c) - V_w c$. Note: V_w does not depend on c.

$$(c - \underline{c})^{-R} - V_w = 0$$

so

$$c^* = \underline{c} + (V_w)^{-1/R}$$
.

At the optimum:

$$u(c^*) - V_w c^* = \frac{((V_w)^{-1/R})^{1-R}}{1-R} - \underline{c}V_w - (V_w)^{-1/R}V_w$$
$$= \frac{R(V_w)^{1-1/R}}{1-R} - \underline{c}V_w$$

D. Optimization of θ at a point in time maximizes an objective function that equals $\theta(\mu - r)V_w + \theta^2\sigma^2V_{ww}/2$. Solve for the optimal θ and the maximized value of $\theta(\mu - r)V_w + \theta^2\sigma^2V_{ww}/2$. Note: V_w and V_{ww} do not depend on θ .

$$(\mu - r)V_w + \theta\sigma^2 V_{ww} = 0$$

SO

$$\theta^* = -\frac{\mu - r}{\sigma^2} \frac{V_w}{V_{ww}}$$

At the optimum:

$$\theta^*(\mu - r)V_w + (\theta^*)^2 \sigma^2 V_{ww} / 2 = -\frac{\mu - r}{\sigma^2} \frac{V_w}{V_{ww}} (\mu - r)V_w + \frac{(\mu - r)^2}{\sigma^4} \frac{(V_w)^2}{(V_{ww})^2} \frac{\sigma^2 V_{ww}}{2}$$
$$= -\frac{(\mu - r)^2}{2\sigma^2} \frac{(V_w)^2}{V_{ww}}$$

2. Positive definite covariance matrix Suppose your client gives you the following 2×2 covariance matrix:

$$V = \left| \begin{array}{cc} 0.0495 & 0.0505 \\ 0.0505 & 0.0495 \end{array} \right|$$

(Okay, your client is more likely to give you a defective 10×10 covariance matrix, but I want this to be easy enough to solve by hand.)

A. Compute the eigenvalues of V. (Hint: to solve for the eigenvalues of A, use the equation $\det(A - \lambda I) = 0$.)

$$\det(V - \lambda I) = (.0495 - \lambda) * (.0495 - \lambda) - .0505 * .0505$$

$$= \lambda^2 - .099\lambda + .0495^2 - .0505^2$$
$$= \lambda^2 - .099\lambda - .0001$$

By the quadratic formula,

$$\lambda = \frac{.099 \pm \sqrt{.099^2 + 4 * .0001}}{2}$$
$$= \frac{.099 \pm .101}{2} = .1 \text{ or } -.001$$

B. Show that V is not positive semi-definite.

Since V has a negative eigenvalue, it is not positive semi-definite.

C. Compute the normalized eigenvectors corresponding to the two eigenvalues. (Hint: use the equation $(A - \lambda_i I)x_i = 0$ to solve for the *i*th eigenvector of A.)

Denote the first eigenvector, corresponding to $\lambda_1 = .1$, as $x_1 = (x_{11}, x_{12})$. Then we have

$$0 = (V - .1I)x_1 = \begin{vmatrix} -0.0505 & 0.0505 \\ 0.0505 & -0.0505 \end{vmatrix} x_1,$$

so that $-.0505x_{11} + .0505x_{12} = 0$ and therefore $x_{12} = x_{11}$. Therefore, x_1 is proportional to (1,1) and we can write it as (x_{11}, x_{11}) . To normalize it, $x_{11}^2 + x_{11}^2 = 1$, so we can take $x_{11} = 1/\sqrt{2}$ (choosing a factor $-1/\sqrt{2}$ would do just as well) and therefore $x_1 = (1,1)/\sqrt{2}$.

Similarly, denote the first eigenvector, corresponding to $\lambda_1 = -.001$, as $x_2 = (x_{21}, x_{22})$. Then we have

$$0 = (V - (-.001)I)x_2 = \begin{vmatrix} 0.0505 & 0.0505 \\ 0.0505 & 0.0505 \end{vmatrix} x_2$$

so that $.0505x_{21}+.0505x_{22}=0$ and therefore $x_{22}=-x_{21}$. Therefore, x_2 is proportional to (1,-1) and we can write it as $(x_{21},-x_{21})$. To normalize it, $x_{21}^2+x_{21}^2=1$, so we can take $x_{21}=1/\sqrt{2}$ (choosing a factor $-1/\sqrt{2}$ would do just as well) and $x_2=(1,-1)/\sqrt{2}$.

D. Change any negative eigenvectors to 0.0001 and compute the new covariance matrix. (Hint: used the normalized eigenvectors and the formula $V = X'\Lambda X$.)

Let

$$X \equiv \frac{1}{\sqrt{2}} \left| \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right|$$

and let

$$\hat{\Lambda} \equiv \left| \begin{array}{cc} .1 & 0 \\ 0 & .0001 \end{array} \right|$$

be the diagonal matrix with the new eigenvalues on the diagonal. Then the new covariance matrix is

$$\hat{V} = X\hat{\Lambda}X'
= \frac{1}{2} \begin{vmatrix} 1 & 1 & | & 1 & 0 & | & 1 & 1 & | \\ 1 & -1 & | & 0 & .0001 & | & 1 & -1 & | \\
= \begin{vmatrix} 0.05005 & 0.04995 & | & 0.04995 & | & | & | \\
0.04995 & 0.05005 & | & | & | & | & | \\
\end{pmatrix}$$