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Continuous random variables

Discrete random variables take on isolated values, while continuous random vari-
ables can take on all values in some interval or intervals. Which to use is a
modelling choice often based on convenience; taking on a thousand different val-
ues may not be qualitatively different from taking on any value in a continuum.

Work with a continuous random variable x, we often work with the probability
density function f (x) or the cumulative distribution function F (x). The proba-
bility density function tells the density of the probability measure with respect to
x; we can say informally that f (x0)∆x is the approximate probability of x being
in an interval of length ∆x at x0.

The cumulative distribution function F (x0) at x0 is the probability x will take on
a value less than x0, and it is related to the density function f (x) by F (x0) =
∫x0
x=−∞ f (x)dx. We can express the expectation of a function h of x in terms of
F or f as

E[h(x)] =
∫ ∞
x=−∞ h(x)f (x)dx =

∫ ∞
x=−∞ h(x)dF (x).
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Properties of density and distributions functions

• If the probability density function f (x) exists everywhere, then

– (∀x)f (x) ≥ 0

–

∫∞
x=−∞ f (x) = 1

– (∀x0)F (x0) =
∫x0
x=−∞ f (x)

– f (x) is not defined for discrete random variables.

• The cumulative distribution function has the the properties:

– (∀x0 ≤ x1)F (x1) ≥ F (x0)

– limx→−∞ F (x) = 0

– limx→∞ F (x) = 1

– F (x) is defined for all random variables, discrete or continuous.

E[h(x)] =
∫ ∞
x=−∞ h(x)dF (x) =

∫ ∞
x=−∞ h(x)F ′(x)dx +

∑

x
h(x)∆F (x)

where ∆F (x) ≡ F (x)− F (x−) ≡ F (x)− lims↑xF (s).
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Using the density to compute moments

We know that E[h(x)] =
∫∞
x=−∞ h(x)f (x)dx. In particular, this allows us to

compute moments like the mean (h(x) = x) and the variance (h(x) = (x−µx)
2),

and other statistics like the skewness and kurtosis that can be written as functions
of moments. Specifically,

µx = E[x] =
∫ ∞
x=−∞ xf (x)dx.

var(x) = E[x2]− µx
2 =

(∫ ∞
x=−∞ x2f (x)dx

)

− µx
2

skew(x) =
E[(x− µx)

3]

σx3
=

∫∞
x=−∞(x− µx)

3f (x)dx

var(x)3/2

kurt(x) =
E[(x− µx)

4]

σx4
=

∫∞
x=−∞(x− µx)

4f (x)dx

var(x)2
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Normal distribution

The normal distribution (traditional bell curve) with parameters µ and σ has the
density function

f (x) =
1√
2πσ

exp








−(x− µ)2

2σ2








.

A random variable x with this density has mean µ, standard deviation σ, and
variance σ2. Sometimes this density f (x) is written as n(x), and the corre-
sponding cumulative distribution function F (x) is written as N(x). We can
write N(x0) =

∫x0
x=−∞ n(x)dx (as always), but we do not know a closed form

expression for N .

The normal distribution plays an important part in statistical theory, because
if we have a large number T of independent and identically distributed (i.i.d.)
draws from a random variable y with mean m and standard deviation s, then
(

∑T
t=1(yt −m)

)

/(s
√
T ) is approximately distributed normally with mean µ = 0

and standard deviation σ = 1. This fact is the starting point of many statistical
tests.
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Normal distribution: moment generating function, skewness and kurtosis

The moment generating function of a random variable x is given by

M(t) = E[etX ].

M(t) is called the moment generating function because the nth moment of x
around the origin is equal to the nth derivative of M(t) evaluated at 0. The
moment generating function is also useful in finance because it allows us to
calculate the expected utility of an exponential utility function.1

For a normal random variable x with mean parameter µ and standard deviation
parameter σ, the moment generating function is eµt+σ2t2/2. This can be used to
verify the mean µ, variance σ2, skewness 0, and kurtosis 3 of x.

1Arguably, the characteristic function, E[eitx] (sometimes defined as a constant times this), where i
2 = −1, is more useful in general because it

exists for all distributions. However, the moment generating function is suitable for our purposes.
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Joint distributions and joint normal density

If we have more than one continuous random variable x1, ..., xn, we can use the
joint density f (x1, ..., xn) for all the random variables to write expectations of
functions of all of them:

E[h(x1, ..., xn)] =
∫ ∞
x1=−∞

∫ ∞
x1=−∞ ...

∫ ∞
x1=−∞ h(x1, ..., xn)dx1dx2...dxn.

One example of this is the multivariate joint normal distribution, which has density

n(x) =
1

√

(2π)n det(Σ)
exp





−1

2
(x− µx)

′Σ−1(x− µ)






where x ∈ ℜn, µ is the vector of means of the elements of x, and Σ is the
covariance matrix of the elements of x.
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Independence

Two random variables are independent if knowing about one random variable
gives us no information about the other. This would be true (or at least a very
good approximation) for repeated rolls of dice or flips of a coin, and it is a good
approximation for returns in some security markets.

If the random variables have densities, x and y are independent if the joint
probability density is multiplicatively separable:

p(x, y) = f (x)g(y)

In this case, f (x) is the density function of x and f (y) is the density function of
y.

If x and y are independent, then they are also uncorrelated, i.e. cov(x, y) = 0. In
general, uncorrelated random variables need not be independent, but uncorrelated
jointly normal random variables must also be independent. In general, x and y
are independent if and only if E[f (x)g(y)] = E[f (x)]E[g(y)] for all bounded
measurable functions f and g.
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Linear combinations of random variables

Suppose x is a vector of random variables with mean vector µ = E[x] and co-
variance matrix Σ = E[(x − µ)(x − µ)′], and let a be a constant (nonrandom)
vector. Then a′x is a random variable with mean a′µ and variance a′Σa. Fur-
thermore, if the elements of x are joint normally distributed, then a′x is normally
distributed.
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Probability Space Approach

For advanced applications of probability theory, we consider random objects (such
as functions) that cannot be represented using finitely many real numbers. For
these general applications, we use measure-theoretic notions to define the prob-
abilities and expectations. A probability space (Ω,F , P ) consists of a set Ω of
primitive events, a sigma-algebra F of measurable sets to which probabilities can
be assigned, and a probability measure P : F → ℜ.
The underlying set Ω of primitive states need not have any structure (beyond
being a set); the required structure is provided by F . The set F is a set of
subsets of Ω (F ⊆ 2Ω), and by definition of sigma-algebra, Ω ∈ F , X ∈ F ⇒
Ω \X ∈ F , and all finite and countable unions of sets in F are also in F , i.e. if
C ∈ F has finitely or countably many elements,

⋃

X∈CX ∈ F . The probability
measure P assigns to each element of F a non-negative probability with the
properties that P (Ω) = 1, P (Ω \X) = 1−P (X), and the probability of a finite
or countable union of disjoint sets in F equals the sum of the probabilities of the
individual sets, i.e. if C is a finite or countable set of disjoint sets in F (so for
distinct elements X1 and X2 of C, X1 ∩X2 = ∅), P (

⋃

X∈CX) =
∑

X∈CP (X).
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Filtered Probability Space

For studying stochastic processes, we use a filtered probability space, written as
(Ω,F , (Ft)t∈T , P ), which has a separate set Ft of measurable sets for each time
index t. We assume that we know more at later times (s < t ⇒ Fs ⊆ FT ) and
P is defined on F , where (∀t)Ft ⊆ F).

a small example:

Ω = {a, b, c}
F = 2Ω

T = {0, 1, 2}
F0 = {∅,Ω}

F1 = {∅, {a}, {b, c},Ω}
F2 = 2Ω

P (X) =
#(X)

3
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