Practice problems for Lecture 4

1. Black-Scholes option pricing

Suppose the stock price is 40 and we need to price a call option with a strike of 45 maturing in 4 months. The stock is not expected to pay dividends. The continuously-compounded riskfree rate is $3 \% /$ year, the mean return on the stock is $7 \% /$ year, and the standard deviation of the stock return is $40 \% /$ year. (The Black-Scholes formula is given at the end of the homework.)
a. What are S and B ?
b. What are x_{1} and x_{2} ?
c. $N\left(x_{1}\right)=0.3627026$ and $N\left(x_{2}\right)=0.2802213$ (confirm for yourself if you like). What is the Black-Scholes call price?
d. What is the Black-Scholes price for the European put with the same strike and maturity?
e. Conceptual question: Since the put option is worth more alive than if exercised now, can we conclude that an American version of the put is worth the same as the European put?

2. Approximation

As noted in class, for near-the-money call options, a good approximation of the option price near maturity is

$$
C \approx \frac{S-B}{2}+.4 \frac{S+B}{2} \sigma \sqrt{T}
$$

where S is the stock price, B ("the bond price") is the present value of receiving the strike at maturity, σ is the local standard deviation, and T is the time to maturity.

Consider an at-the-money call option that is one week to maturity on a stock
with a price of $\$ 50 /$ share and a local standard deviation of $35 \% /$ year. The continuously-compounded riskfree rate is $1 \% /$ year.
b. What is the call price from Black-Scholes?
c. How much is the error made by using the approximate formula instead of Black-Scholes?
3. Implied volatility

A stock has price $\$ 50$ and a call option with strike $\$ 55$ and a month to maturity has a price of $\$ 0.70$. What is the implied volatility of the option? Assume a riskfree rate of $1 \% /$ year.

