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Research Question

The primary focus of this paper is to consider the information
useful for asset pricing.

@ Existing measures of sentiment:

o Measured as analyst estimates, survey data, news stories,
technical indicators (put/call ratios and relative strength
indicators).

o Generally suffer from low update frequency and represent a
limited subset of the investor population

@ Social media sources of information like Twitter offer improved
timeliness and an opportunity to expand the surveyed
population.
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Research Question

This paper documents whether Twitter sentiment can:

@ Explain excess returns after considering traditional asset
pricing factors

@ Predict asset returns and shifts in volatility
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Literature

@ The impact of FOMC announcements: Bernanke and Kuttner
(2005), Cieslak, Morse, and Vissing-Jorgensen (2016), Lucca
and Moench (2015), and Jegadeesh and Wu (2017)

@ Textual analysis in finance: Tetlock (2007), Bailey and
Schonhardt-Bailey (2008), Hoberg, Phillips, and Prabhala
(2014), and Hoberg and Maksimovic (2015)
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Data: Sentiment

TweetPolarity is a daily indicator of the sentiment of tweets
mentioning the Federal Reserve.

Tweet Polarity

@GStuedler this was caused by the worst regulation of all time,

the Federal Reserve Act of 1913. Decoupled money from reality —1.00
#topprog #tcot

@SenJohnMeCain Maybe instead of partisan bickering, you

should all come together and go after the real bad guys... The —1.00
Federal Reserve

Bernanke Says Biggest Worry is That Politicians Abandon
Banks: (CEP News) - U.S. Federal Reserve Chairman Ben Be.. —0.75
http://tinyurl.com/cosb9m

Treasurys rise as Fed meets: Treasury prices rose Tues-
day amid speculation that the Federal Reserve will begin b.. 0.60
http:/ /tinyurl.com /ed2qjb

RT @jordangunderson: is proud that Jason Chaffetz is 1 of 28
Congressmen cosponsoring Ron Paul’s Federal Reserve Trans- 0.80
parency Act (HR 1207).

Very impressed w/Federal Reserve Chair Ben Bernanke! 1.00

Exhibit 1: Example tweets with polarity scores.
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Data: Sentiment

The Pattern python package is used to determine document
sentiment:
@ Each word group is assigned a polarity based on the
SentiWordnet dictionary
@ Take the average polarity of all word groups as document
sentiment
e Following Giannini, Irvine, and Shu (2014), Tweets are
weighted by the number of followers each user has.
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Data: Sentiment

The Pattern python package is used to determine document
sentiment:
@ Each word group is assigned a polarity based on the
SentiWordnet dictionary
@ Take the average polarity of all word groups as document
sentiment
e Following Giannini, Irvine, and Shu (2014), Tweets are
weighted by the number of followers each user has.

Example

This film should be brilliant. It sounds like a great plot, the actors
are first grade, and the supporting cast is good as well, and
Stallone is attempting to deliver a good performance. However, it
can't hold up.?

?Example from Pang, Lee, et al. (2008).
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Data is collected:

@ Using the Topsy API: tweets that mention: “FOMC", “Federal
Reserve”, “Bernanke”, and “Yellen”

o Value, Size, and Momentum factors

@ Excess daily return R; on the CRSP value-weighted market
index
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Data is collected:

@ Using the Topsy API: tweets that mention: “FOMC", “Federal
Reserve”, “Bernanke”, and “Yellen”

o Value, Size, and Momentum factors

@ Excess daily return R; on the CRSP value-weighted market
index

R: =« + B1IndicatorFOMC; + 3> TweetPolarity:_1
+ B3 TweetPolarity; 1 * IndicatorFOMC;
+ 1 HML: + 42 SMB; + y3UMD; + 4 Re—1 + €
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Empirical Analysis

(1) (2) (3) (4)

VARIABLES Return Return ~ Return Return
IndicatorFOMC 0.331% 0.338% 0.308%F  (0.343%*
(0.187) (0.187) (0.177) (0.140)

TweetPolarity 0.0510%*  0.0493*  0.0156
(0.0249)  (0.0252) (0.0195)

TweetPolarity FOMC 0.490 0.625%*
(0.529)  (0.296)
hml 0.843%%*
(0.0757)
smb 0.857+%*
(0.0640)
umd -0.141%*
(0.0602)

L.Return -0.0722%  -0.0715% -0.0716%  -0.0334
(0.0384) (0.0384) (0.0384) (0.0296)
Constant 0.0630%*%  0.0628%% 0.0628%* 0.0516%*
(0.0313) (0.0312) (0.0313) (0.0246)

Observations 1,506 1,506 1,506 1,506

Standard errors in parentheses
% 00,01, ** p<0.05, * p<0.1
Exhibit 6: Regression of daily returns (in percent) on tweet polarity, FOMC meeting

indicator, and Fama French factors. The interaction term is equal to TweetPolarity x
IndicatorFOMC. Newey-West standard errors are computed using 4 lags.
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Empirical Analysis

Would a portfolio trading on this information be profitable?

o Let us invest in a market portfolio such that R, ~ N(u¢,0?)
and a risk-free asset with return Rf.

@ Choose a fraction f; of wealth to invest in the risky asset. The
optimal investment (under a logarithmic utility function) is

Kt — Rf,t

2
Ot

fi =

@ Shortselling is allowed and there is an upper bound on leverage
so that || < L.
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Empirical Analysis

To determine the fraction to invest in the risky asset the authors
predict fi; and 62 following

fir = a+ BX; + €

62 = Var[a + BX: + €]

where X; is one of four competing models:
@ No information
@ X: = (IndicatorFOMC;)
© X: = (IndicatorFOMC;, TweetPolarity;_)
Q X: = (IndicatorFOMC;, TweetPolarity;_1 * IndicatorFOMC;)
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Empirical Analysis

Strategy L Return Drawdown Sharpe Info. Ratio DBeta Alpha

Model 1 1.00  13.08 -7.77 0.88 0.94 -0.83
(0.00)  (0.00)
Model 2 1.00  10.97 -4.89 0.88 -0.76 0.78  -0.67
(0.00)  (0.00)
Model 3 1.00 12.87 -7.84 0.92 -0.11 0.85 0.18
(0.01)  (0.00)
Model 4 1.00 14.06 -8.19 0.93 0.33 0.94 0.17
(0.01)  (0.00)
Model 1 2.00 1347 -T.7T 0.87 0.99 -1.10
(0.00)  (0.00)
Model 2 2.00  13.04 -3.72 0.93 -0.15 0.83  0.60
(0.01)  (0.00)
Model 3 2.00  15.95 -9.26 0.95 0.35 0.97 1.52
(0.01)  (0.00)
Model 4 2.00 17.11 -7.35 0.98 0.72 1.06 1.41
(0.01)  (0.00)
Model 1 4.00 13.47 -7.77 0.87 099 -1.10
(0.00)  (0.00)
Model 2 4.00 16.75 -2.71 0.91 0.28 0.93 3.16
(0.02)  (0.00)
Model 3 4.00 2054 -7.95 0.97 0.55 1.08  4.66
(0.02)  (0.00)
Model 4 4.00  22.53 -5.42 L.07 0.82 L14  3546

(0.02)  (0.00)
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Exhibit 11: Kelly fractions over the 2010-2014 period for four strategies with the quarter-

Kelly criterion and a leverage cap of 4.
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Conclusion

So, is the information provided in Tweets useful for asset pricing?

@ Tweet based sentiment directly prior to FOMC meetings
significantly explained excess returns after accounting for
traditional asset pricing factors.

o Twitter sentiment may be used to adjust portfolio allocations
with marginally improvements to risk and return.

@ However, the low frequency of FOMC meetings, short time
interval for testing, and dependence of the out-performance on
a few (2-5) observations puts the claim of significant excess
return in doubt.
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Giving Content to Investor Sentiment (Tetlock, 2007)

@ Approach: Analyze the “Abreast of the Market” column in the
Wall Street Journal to the determine potential predictive
content.
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Giving Content to Investor Sentiment (Tetlock, 2007)

@ Approach: Analyze the “Abreast of the Market” column in the
Wall Street Journal to the determine potential predictive
content.

@ Results: Media pessimism predicts downward pressure on
market prices and elevated trade volume followed by reversion
to fundamentals. Results are consistent with noise and
liquidity trades instead of new information about fundamental
asset value.
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o Uses the automated program “General Inquirer” (GI)
maintained by Roger Hurwitz at Harvard. The program counts
the number of words in each of 77 categories of words
according to the Harvard 1V-4 psychosocial dictionary.

e The authors complete PCA to find the primary factor in the
(77 x 77) covariance matrix. The authors estimate loadings for
the latent factor in year t using data from year t-1.
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Giving Content to Investor Sentiment (Tetlock, 2007)

e Methodology:

o Uses the automated program “General Inquirer” (GI)
maintained by Roger Hurwitz at Harvard. The program counts
the number of words in each of 77 categories of words
according to the Harvard 1V-4 psychosocial dictionary.

e The authors complete PCA to find the primary factor in the
(77 x 77) covariance matrix. The authors estimate loadings for
the latent factor in year t using data from year t-1.

@ The factor assigns large positive weight to negative categories
(Weak, Fail, Fall, Negative).

o The factor assigns moderately negative weight to positive
categories.

o Test for significant explanation of return and volume by
estimating a VAR model.

Pablo D. Azar and Andrew W. Lo The Wisdom of Twitter Crowds:



Giving content to investor sentiment (Tetlock, 2007)

Comparisons and comments g
Comments on text analysis

Comments on Text Analysis

Sample selection:
@ Availability?

2APIs (application program interfaces) can be used to download textual
data into programs for analysis. Web scraping offers another means of
gathering data (see selenium).
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Comments on Text Analysis

Sample selection:
@ Availability?
@ Relevance
© Timeliness

Q Quality: Standardized Format, machine readable

2APIs (application program interfaces) can be used to download textual
data into programs for analysis. Web scraping offers another means of
gathering data (see selenium).
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® Nardo, Petracco, and Naltsidis (2016) discuss dictionaries used
for financial text analysis.
© Azar and Lo (2016) use the Pattern package in python which
uses the SentiWordnet dictionary. Li et al. (2014), Tetlock
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@ Bag of Words vs Natural Language Processing (NLP)
© Topic Categorization

@ Supervised vs. Unsupervised
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Comparisons and comments g
Comments on text analysis

Comments on Text Analysis

Methodology:
© Dictionary:
® Nardo, Petracco, and Naltsidis (2016) discuss dictionaries used
for financial text analysis.
© Azar and Lo (2016) use the Pattern package in python which
uses the SentiWordnet dictionary. Li et al. (2014), Tetlock
(2007), and Pang, Lee, et al. (2008) use other dictionaries.

@ Bag of Words vs Natural Language Processing (NLP)
© Topic Categorization
@ Supervised vs. Unsupervised

@ Robustness to user defined methods and settings
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Additional References

@ Other references to consider include Aggarwal and Zhai
(2012), Bird, Klein, and Loper (2009), Wilkerson and Casas
(2017), and Pang, Lee, et al. (2008).

@ Although Plakandaras et al. (2015) don’t use text analysis,
they provide references to several papers that do use text
analysis to predict commodity and equity market movements.
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