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Research Question

The primary focus of this paper is to consider the information

useful for asset pricing.

Existing measures of sentiment:

Measured as analyst estimates, survey data, news stories,
technical indicators (put/call ratios and relative strength
indicators).
Generally su�er from low update frequency and represent a
limited subset of the investor population

Social media sources of information like Twitter o�er improved

timeliness and an opportunity to expand the surveyed

population.
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Research Question

This paper documents whether Twitter sentiment can:

1 Explain excess returns after considering traditional asset

pricing factors

2 Predict asset returns and shifts in volatility
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Literature

The impact of FOMC announcements: Bernanke and Kuttner

(2005), Cieslak, Morse, and Vissing-Jorgensen (2016), Lucca

and Moench (2015), and Jegadeesh and Wu (2017)

Textual analysis in �nance: Tetlock (2007), Bailey and

Schonhardt-Bailey (2008), Hoberg, Phillips, and Prabhala

(2014), and Hoberg and Maksimovic (2015)
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Data: Sentiment

TweetPolarity is a daily indicator of the sentiment of tweets

mentioning the Federal Reserve.
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Data: Sentiment

The Pattern python package is used to determine document

sentiment:

Each word group is assigned a polarity based on the

SentiWordnet dictionary

Take the average polarity of all word groups as document

sentiment

Following Giannini, Irvine, and Shu (2014), Tweets are

weighted by the number of followers each user has.

Example

This �lm should be brilliant. It sounds like a great plot, the actors

are �rst grade, and the supporting cast is good as well, and

Stallone is attempting to deliver a good performance. However, it

can't hold up.a

aExample from Pang, Lee, et al. (2008).
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Data

Data is collected:

Using the Topsy API: tweets that mention: �FOMC�, �Federal

Reserve�, �Bernanke�, and �Yellen�

Value, Size, and Momentum factors

Excess daily return Rt on the CRSP value-weighted market

index

Rt =α+ β1IndicatorFOMCt + β2TweetPolarityt−1

+ β3TweetPolarityt−1 ∗ IndicatorFOMCt

+ γ1HMLt + γ2SMBt + γ3UMDt + γ4Rt−1 + εt
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Empirical Analysis
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Empirical Analysis

Would a portfolio trading on this information be pro�table?

Let us invest in a market portfolio such that Rt ∼ N(µt , σ
2
t )

and a risk-free asset with return R f
t .

Choose a fraction ft of wealth to invest in the risky asset. The

optimal investment (under a logarithmic utility function) is

f ∗t =
µt − Rf ,t

σ2t

Shortselling is allowed and there is an upper bound on leverage

so that |f ∗t | ≤ L.
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Empirical Analysis

To determine the fraction to invest in the risky asset the authors

predict µ̂t and σ̂
2
t following

µ̂t = α+ βXt + εt

σ̂2t = Var [α+ βXt + εt ]

where Xt is one of four competing models:

1 No information

2 Xt = (IndicatorFOMCt)

3 Xt = (IndicatorFOMCt ,TweetPolarityt−1)

4 Xt = (IndicatorFOMCt ,TweetPolarityt−1 ∗ IndicatorFOMCt)
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Conclusion

So, is the information provided in Tweets useful for asset pricing?

Tweet based sentiment directly prior to FOMC meetings

signi�cantly explained excess returns after accounting for

traditional asset pricing factors.

Twitter sentiment may be used to adjust portfolio allocations

with marginally improvements to risk and return.

However, the low frequency of FOMC meetings, short time

interval for testing, and dependence of the out-performance on

a few (2-5) observations puts the claim of signi�cant excess

return in doubt.
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Giving Content to Investor Sentiment (Tetlock, 2007)

Approach: Analyze the �Abreast of the Market� column in the

Wall Street Journal to the determine potential predictive

content.

Results: Media pessimism predicts downward pressure on

market prices and elevated trade volume followed by reversion

to fundamentals. Results are consistent with noise and

liquidity trades instead of new information about fundamental

asset value.
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Giving Content to Investor Sentiment (Tetlock, 2007)

Methodology:

Uses the automated program �General Inquirer� (GI)
maintained by Roger Hurwitz at Harvard. The program counts
the number of words in each of 77 categories of words
according to the Harvard IV-4 psychosocial dictionary.
The authors complete PCA to �nd the primary factor in the
(77 x 77) covariance matrix. The authors estimate loadings for
the latent factor in year t using data from year t-1.

The factor assigns large positive weight to negative categories
(Weak, Fail, Fall, Negative).
The factor assigns moderately negative weight to positive
categories.

Test for signi�cant explanation of return and volume by
estimating a VAR model.
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Comments on Text Analysis

Sample selection:

1 Availability2

2 Relevance

3 Timeliness

4 Quality: Standardized Format, machine readable

2APIs (application program interfaces) can be used to download textual
data into programs for analysis. Web scraping o�ers another means of
gathering data (see selenium).
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Comments on Text Analysis

Methodology:
1 Dictionary:

1 Nardo, Petracco, and Naltsidis (2016) discuss dictionaries used
for �nancial text analysis.

2 Azar and Lo (2016) use the Pattern package in python which
uses the SentiWordnet dictionary. Li et al. (2014), Tetlock
(2007), and Pang, Lee, et al. (2008) use other dictionaries.

2 Bag of Words vs Natural Language Processing (NLP)

3 Topic Categorization

4 Supervised vs. Unsupervised

5 Robustness to user de�ned methods and settings
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Additional References

Other references to consider include Aggarwal and Zhai

(2012), Bird, Klein, and Loper (2009), Wilkerson and Casas

(2017), and Pang, Lee, et al. (2008).

Although Plakandaras et al. (2015) don't use text analysis,

they provide references to several papers that do use text

analysis to predict commodity and equity market movements.
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