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Abstract

University donors choose to contribute to endowment if they want to make a perma-

nent contribution to the university. It is consequently viewed as a responsibility of the

university to preserve capital when choosing the investment policy and the spending

rule. Practitioners commonly model the preservation-of-capital constraint by requiring

the expected real rate of return to be greater than the spending rate, which is the

condition for a unit to increase in real value on average. Unfortunately, this criterion

does not imply that capital grows eventually because the law of large numbers applies

to sums, not products. The measure can be corrected by requiring the log of the real

value of a unit to increase on average, which reduces permitted spending by approxi-

mately half the variance of returns if period returns are not too volatile. Even if the

correct target spending rule is applied, the common practice of smoothing spending

using a partial adjustment model for spending makes spending unstable in bad times,

and in fact the probability of eventual ruin is one. However, we show that a simple

modification to the traditional smoothing rule does preserve capital.
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1 Introduction

Donors who wish to contribute to universities have a number of options depending

on when they want their giving to have an impact. For example, donors wanting to

have an immediate impact can contribute through annual giving, donors who want

to have an impact for an intermediate time frame can give funds for a building, and

donors who want to have a permanent impact can contribute to endowment. Since

contributions to endowment are supposed to have a permanent impact, the university

has a responsibility to make sure that the spending rule and investment strategy for

endowment, taken together, preserve capital. In other words, preservation of capital

is viewed as a constraint on universities’ choice of policy. This paper takes a look

at preservation of capital with a focus on existing practice. We find that the usual

criterion (spending rate less than expected real return on investment) for preservation

of capital is incorrect and actually it is consistent with polices of the form commonly

used in practice for which wealth always tends to zero over time. The traditional rule

says that the real value of a unit1 of endowment increases on average; a corrected rule

says that log of the real value of the endowment increases on average, and this can be

significantly different. We also show that a stylized version of the practice of smoothing

spending implies that the endowment never preserves capital with risky investment,

and we show how to modify the smoothing rule to preserve capital.

A spending rate less than the expected return on assets, calculated in real terms,

has long been used as a criterion for whether an endowment preserves capital. This

criterion is based on the intuition of the law of large numbers, since it means that on

average the expected return on investment in the endowment should cover spending, or

equivalently what is left in the endowment grows on average. However, this intuition

is implicitly based on a mis-application of the law of large numbers: the law of large

1The notion of unitization we are using here is similar to the unitization commonly used in
measuring the performance of a portfolio manager. For performance measurement, the manager does
not get credit for increases in value due to inflows and is not charged for spending out of the portfolio.
For preservation of capital, we do not get credit for inflows, but we are charged for spending.
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numbers applies to sums not products, but wealth grows as a product over time of one

plus the return less spending. Here is a simple example to illustrate that the traditional

criterion of spending at a rate less than the expected rate of return on assets does not

necessarily preserve capital.

Example 1 (Destroying capital but satisfying the traditional criterion): As-

sume an endowment has a spending rate of 0% and an investment which has equal

chances of tripling and going to zero each period:

1 ✟
✟✟✯

❍
❍❍❥

3 probability 1/2

0 probability 1/2

The expected rate of return is (50%) which is greater than the spending rate (0%).

According to the traditional criterion, capital should be preserved. However, in each

year there is a 50% probability the endowment will be wiped out and the probability

of surviving for T years is 2−T which approaches 0 rapidly as T increases. Having no

endowment at all with probability close to one certainly does not preserve capital but

it satisfies the traditional rule. Moreover, having the possibility of the portfolio value

dropping to zero is not critical in this example, as we will see in Example 2 in the text.

So far, we have ducked the question of how to define preservation of capital. In

Example 1, the definition is not very critical, because soon having zero capital with

probability close to one cannot reasonably be viewed as preserving capital. We say

a policy preserves (resp. destroys) capital if the value of a unit of the endowment

in real terms goes to infinity (resp. zero) over time in probability. These definitions

are motivated by the intuition of the traditional criterion, and they are good for our

purpose. Our definitions incorporate two reasonable features normally used in practice:

1) we use real “inflation-adjusted” returns since capital must be preserved in terms of

spending power and not just nominal value, and 2) we look at the value of a unit of

endowment and do not include future contributions but we do subtract spending. If we

spend the entire contribution this year and replace it by someone else’s contribution
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next year, we do not consider that to be making a permanent contribution.

Although the traditional criterion does not ensure that capital is preserved, we

provide a simple alternative criterion that does. Taking logarithms converts products

into sums, and capital is preserved if the expected log return net of spending, defined as

the expected log of one plus the return less the spending rate, is positive. This criterion

preserves capital since it implies that the value of the endowment arising from an initial

investment grows without limit over time if this assumption is true. Noticeably, we

provide a reasonable example in which changing to the correct criterion reduces the

admissible spending rate by 1%, which implies that endowments may need to reduce

spending by 20% if they currently spend about 5% of their capital.

Besides looking at the basic spending criterion, we also look at the common practice

of overlaying smoothing on the basic spending rule. Smoothing of spending is supposed

to prevent the damage done by large fluctuations in spending. This is a reasonable

idea: sudden decreases in spending are disruptive, and sudden increases may be used

carelessly. Unfortunately, the usual partial adjustment rule of moving only a fixed

fraction of the way toward the target spending level never preserves capital in the

endowment if the target spending rate is positive (even if very small) and the portfolio is

risky with i.i.d. returns. This result is based on a continuous-time model in which that

portfolio returns are randomly drawn from the same distribution and are independent

over time. Intuitively, random fluctuations imply that sooner or later we will have bad

luck in the risky investment making the spending rate very large. When the spending

rate is very large, capital is depleted relatively more quickly than the smoothing reduces

spending, and as a result the endowment ends up sooner or later in a “death spiral”

plunging to zero.

Since smoothing is a good idea and the traditional smoothing rule does not preserve

capital, we have proposed a possible solution, a simple modified smoothing rule that

includes a new term that changes spending to compensate for the expected change in

spending rate given the excess of current spending over the expected return of assets.

For this rule, we have a characterization of the parameter values for which capital
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is preserved. Moreover, an interest rate environment like the current one in which

inflation exceeds the nominal rate is a special challenge, but there is a simple result:

given some stationarity, expected log return net of spending does not have to be positive

every period, and only has to be positive on average.

This paper investigates rules violating preservation of capital. The focus is on

the necessary conditions endowments need to meet, i.e., preserving capital as they

promise to the donors when donating money. This contrasts to the usual optimal

investment approach taken by academics which maximizes a utility function subject

to constraints (see for example, Dybvig (1999) and Gilbert and Hrdlicka (2015)). In

general, practitioners find optimization models less useful than academics would hope,

since it is difficult to incorporate all the considerations that are important in practice.

Nonetheless, optimization models are useful benchmarks for thinking about new rules.

Although we do not provide a new optimization model in this paper, we look at some

implications of incorporating preservation of capital in these models. In particular, our

results suggest that the definition of preservation of capital, which is fine for the sorts of

policies traditionally considered, will have to be refined for use in optimization models.

The natural definition we use in this paper can be manipulated (and the optimization

model will find the “optimal” manipulation) implying the constraint will either be

irrelevant in an optimization problem or there will be no solution. In particular, we

prove that any utility level that can be obtained without the constraint on preservation

of capital can also be approached arbitrarily closely with the constraint. Intuitively,

this is because the constraint only imposes a condition in the limit as time increases, for

which compounding can obtain a large value from a trivial investment. For example,

the current college president may choose to spend all but two cents worth of the

endowment before the end of his term of service, with a plan of modest spending

afterwards. Theoretically, the two cents will grow without limit over time to satisfy

the constraint on preservation of capital without having any material effect on the

current president’s plans.

The rest of the paper is arranged as follows. Section 2 documents the problem with
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the traditional criterion for preserving capital and provides the new correct criterion.

Section 3 shows that traditional smoothing implies capital is not preserved. We provide

a modified smooth spending rule that preserves capital. Section 4 comes up with the

condition for preserving capital with temporarily negative risk-free rate. Section 5

discusses optimization model of spending and investment that preserve capital with

smooth spending. Section 6 closes the paper.

2 Spending Rate Less Than Expected Return

In the following subsection, we present a reasonable definition of preservation of capital

that will be used in most of the paper. As we show in Section 5, this definition would

have to be strengthened to be used in an optimization model.

2.1 Definition of Preservation of Capital

To characterize preservation of capital, we require a formal definition of what this

means. Fortunately, most of our results will be robust to a range of reasonable choices

for how we define preservation of capital. We study the management of a unit of en-

dowment, with a proportional change equaling the investment return less the spending

rate, but not including any new contributions. Looking at a unit without credits for

subsequent contributions is standard in practice for endowments and it is important

because we are looking for a contribution to have a permanent impact. It is annual

giving, not a permanent contribution to endowment, if we spend the entire contribu-

tion this year and replace it using future contributions. Including future contributions

would be important for writing down optimization problems and spending from future

contributions should be included in the objective function. However, in this paper we

are focusing on the preservation-of-capital constraint rather than the objective func-

tion.

We let Wt be the real (inflation-adjusted) value of wealth in the unit at time t with
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spending St. We will consider both continuous and discrete time. In discrete time, we

model wealth dynamics as Wt = Wt−1(1+rt−st), where rt is the real rate of return and

st is the spending rate (as a fraction of Wt−1) at time t.2 We will not concern ourselves

with valuation issues such as what price index to use or how to value illiquid assets, so

that given the investment and spending policy for the endowment, the processes Wt,

rt, and st are well-defined. We also abstract from parameter uncertainty about the

distribution of returns.

For most of the paper, we will use the following definitions:

Definition 1 Endowment wealth is said to be preserved if the real value of a unit Wt

becomes arbitrarily large over time: plimt→∞Wt = ∞.3

Definition 2 Endowment wealth is said to be destroyed if the real value of a unit Wt

vanishes over time: plimt→∞Wt = 0.

The forms of these definitions look the same in both continuous and discrete time

although the implicit set of possible times is different. We think of the definition of

destroying capital as relatively conservative, since no reasonable rule for preserving

capital would say we are preserving capital if wealth is almost always close to 0 when

t is large. This is what we need for our main results that the traditional rules are

not sufficient to preserve capital. This is a good definition for the main purpose of

our paper, which is to evaluate current practice, but it should refined for use in an

optimization model, as discussed in Section 5.

2This convention amounts to having spending St taking place at the end of the period just before
Wt is measured. It is straightforward to change our results for other conventions. For example, if
spending St takes place at the beginning of the period just after Wt−1 is measured, we would define
st ≡ St/Wt−1 and then Wt = Wt−1(1 − st)(1 + rt) with obvious changes in the statements of our
results.

3As is conventional, plim indicates convergence in probability. By definition, plim
t↑∞Wt = ∞ if

for all X > 0, prob(Wt > X) → 1 as t → ∞.
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2.2 Preserving Capital in Discrete Time

One traditional criterion says that a spending rate of no more than the average return

on the endowment will preserve its value. This traditional criterion is widely adopted

and clearly stated in the spending policy statements of many university endowments.

For example, the spending policy statement of UCSD Foundation (2014) states that

its objective is to “achieve an average total annual net return equivalent to the endow-

ment spending rate adjusted for inflation.” Moreover, the endowment of Henderson

State University (2014) even employs a concrete example to illustrate its objective

of achieving an inflation-adjusted average return equal to the spending rate: “Total

return objective 7.00%, spending rate 4.00%, administration fee 1.50%, and inflation

rate 1.50%.” This criterion is also mentioned by Rice, Dimeo, and Porter (2012), which

gives as a hypothetical example: “the primary objective of the Great State University

Endowment fund is to preserve the purchasing power of the endowment after spending.

This means that the Great State University Endowment must achieve, on average, an

annual total rate of return equal to inflation plus actual spending.” Despite its wide

use, the traditional criterion is not sufficient to guarantee preservation of capital.

Absent risk, this criterion makes perfect sense. Suppose the real portfolio return

rt = r and the spending rate st = s are both riskless and constant over time. The

traditional criterion says that the spending is less than the return on the portfolio, that

is, s < r, then capital is preserved. We have that

Wt = Wt−1(1 + r − s) (1)

= W0 (1 + r − s)t . (2)

In this riskless case, spending less than the return on the endowment implies the

endowment increases without bound, so we have preservation of capital, while spending

more than the return on the endowment implies the endowment decreases to zero over

time, so we have destruction of capital. So far so good. In the traditional criterion, the
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next step says we can use the same analysis an uncertain world, “you know, because

of the law of large numbers.” However, the application of law of the large numbers is

fallacious because the law of large numbers applies to sums, not products. Now that

the return is random, (1) becomes

Wt = Wt−1(1 + rt − st) (3)

= W0

t∏

i=1

(1 + ri − si). (4)

As was shown in Example 1 in the Introduction, even if 1 + ri − si has mean larger

than 1 and is i.i.d. over time, the wealth (4) does not necessarily grow over time and

indeed capital may be destroyed.

Example 1 may seem extreme because the wealth can actually reach 0; the following

example shows that the traditional criterion is consistent with destruction of capital

even if wealth is always positive:

Example 2 (Destroying capital but satisfying the traditional criterion): As-

sume an endowment has a spending rate of 0% and an investment that triples or is

reduced by a factor 1/9 with equal probabilities:

1 ✟
✟✟✯

❍
❍❍❥

3 probability 1/2

1/9 probability 1/2

The expected rate of return 5/9 is greater than the spending rate 0%, but the

endowment still vanishes over time, so the traditional criterion fails. To prove this,

note that

Wt = W0

∏t

i=1
(1 + ri − si) (5)

= W0 exp
(∑t

i=1
log (1 + ri − si)

)

. (6)
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Moreover

E [log (1 + ri − si)] =
1

2
log 3 +

1

2
log

(
1

9

)

=

(
1

2
+

1

2
× (−2)

)

log 3 = −1

2
log 3 < 0.

Therefore, by the law of large numbers, plim
∑t

i=1 log(1 + ri − si) = −∞ and by (5)

plimWt = 0. �

To correct the traditional criterion, we can to first convert the multiplication to a

sum by taking logarithms:

log(Wt) = log(W0) +
∑t

i=1
log(1 + ri − si),

and now we can use the law of averages (i.e., the law of large numbers or the central

limit theorem) if we assume the appropriate regularity. This leads to the following

theorem.

Theorem 1 Recall that Wt is the value of a unit of endowment at time t, rt is the

endowment’s rate of return from t − 1 to t, and st is the spending rate at t as a

fraction of wealth at t − 1, so that Wt/Wt−1 = 1 + rt − st. Assume that W0 > 0,

that Wt/Wt−1 is i.i.d. over time, and that log(Wt/Wt−1) has finite mean and vari-

ance. Then 1) endowment capital is preserved according to Definition 1 if and only

if E[log(Wt/Wt−1)] = E[log(1 + rt − st)] > 0 and 2) endowment capital is destroyed

according to Definition 2 if and only if E[log(Wt/Wt−1)] = E[log(1 + rt − st) < 0.

Moreover, by Jensen’s inequality and concavity of the logarithm, we have

E[log(Wt/Wt−1)] ≤ log(E[Wt/Wt−1]), (7)

with inequality if and only if Wt/Wt−1 is riskless. This demonstrates that the corrected

criterion E [log(Wt/Wt−1)] = E[log(1 + rt − st)] > 0 is stricter than the traditional

criterion E [Wt/Wt−1] = E[log(1 + rt − st)] > 1.

Switching to the correct criterion can be economically significant. Suppose our
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portfolio has a mean return of 5% and a standard deviation of 15%. The traditional

rule says the mean spending rate must be less than 5%. By the Taylor series expansion,

we have

E[log(1 + r − s)] ≈ E[r − s]−
(
1

2

)

Var[r − s]

= 5%− s− 1

2
(.15)2

= 3.875%− s,

which means spending must be less than about 4% instead of less than 5% We will

see that this rule that the spending must be less than the mean return less half the

variance becomes exact in the usual continuous-time model.

Moving to the corrected (log) criterion fixes one unreasonable feature of the tra-

ditional rule. Consider investing in portfolio putting part of wealth in a riskless asset

with mean return r and part in a risky asset with a mean return µP > r that might

underperform the riskless asset. Then if we put a proportion θ in the stock (θ could be

larger than one for a levered position), the traditional criterion says we preserve capital

if r+ θ(µP − r) > s. However, this implies that we can spend at as high a rate s as we

want, so long as we take on enough risk by choosing θ to be high enough! This is absurd

on its face, and due entirely to the fallacy of the traditional criterion. However, the

corrected criterion does not have this problem: the curvature of the logarithm implies

that given s, E[log(1 + r + θ(µP − r) − s)] < 0 for θ large enough, so that taking on

more risk eventually constrains spending more.

As mentioned briefly before, a couple of qualifications are in order for the positive

result for the riskless case and are also relevant for the risky case. First, we should work

with real returns, that is, returns in excess of inflation. This adjustment is normally

done correctly in practice when using the traditional criterion: we are not preserving

capital if the dollar value of the endowment increases by 2%/year but inflation is

5%/year. The second qualification says that we should be careful about the timing of
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the cash flows. The assumption in (1) is that spending takes place at the end of the

period, so the wealth relativeWt/Wt−1 = 1+rt−st. However, the actual timing depends

on the local convention. For example, if budgeted spending for the year is taken out of

the endowment and placed in a separate account at the beginning of the year, the wealth

relative would be (1− st)(1 + rt) and the criterion for preservation of capital becomes

E[log((1−st)(1+rt))] > 0. Calculations given other convention are straightforward but

can be messy. For example, if the spending St = stWt−1, is computed at the beginning

of the year but taken out in two parts, half at the start of the year and half in the

middle, the wealth relative is Wt/Wt−1 = (1 − st/2)(1 + rH1
t − st/2)(1 + rH2

t ), where

rH1
t is the return on the assets in the first half of the year and rH2

t is the return in the

second half. In general, the corrected criterion is E[log(Wt+1/Wt)] > 0, where the real

value of a unit Wt is assessed for any spending but not credited for new contributions.

It is also implicit in our analysis that there is a degree of integrity in the endowment

accounting process. For example, it would be improper for the university to borrow

from the endowment and count the loan as an asset. This misrepresents the value of the

endowment and could be used to circumvent entirely any requirements for preservation

of capital. Just spend whatever you want out of endowment, record the spending as

a ten-year bullet loan, and when the loan matures roll it over into a new ten-year

bullet loan. Using this device, we could spend the entire endowment without recording

any spending at all. In our view a university borrowing from its own endowment is

fraudulent since it misrepresents the value of the endowment, but we do not know how

the law would view this.

2.3 Preserving Capital in Continuous Time

In continuous time, the approximate criterion s < µ − σ2/2 becomes exact, as shown

in the following Theorem:

Theorem 2 Suppose investment in the endowment has constant local mean return µ,

local standard deviation σ, and continuous spending rate s. Then the wealth of the
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endowment follows the stochastic differential equation

dWt/Wt = µdt+ σdZt − sdt. (8)

This policy preserves capital if and only if s < µ−σ2/2, while it destroys capital if and

only if s > µ− σ2/2.

Proof: Applying Itô’s Lemma to log(Wt) and using (8), we have that,

d log(Wt) =

(

µ− σ2

2

)

dt+ σdZt,

which implies that

log(Wt) = log(W0) +

(

µ− σ2

2

)

t+ σZt

N

(

log(W0) +

(

µ− σ2

2

)

t, σ2t

)

.

(This may be familiar because it is the usual formula for a stock with local mean

return µ, local standard deviation σ, and continuous dividend paid at the rate s per

unit time.) Therefore, for any fixed X > 0,

prob(Wt ≤ X) = prob(log(Wt) ≤ log(X))

= N

(
log(X)− log(Wt)− (µ− σ2/2− s)t

σ
√
t

)

→t↑∞







0 if s < µ− σ2/2

1/2 if s = µ− σ2/2

1 if s > µ− σ2/2

Since X is arbitrary, the required results follow from applying Definitions 1 and 2. �

Remark 1 (Knife-edge Case): It is a knife-edge case when the expected log return

equals the expected spending rate, i.e., s = µ − σ2/2. In this case, logW is a random
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walk and takes on arbitrarily large and small real values over time, returning with prob-

ability one to logW0 again and again, so capital is not preserved or destroyed according

to Definitions 1 and 2. We can imagine definitions under which capital is or is not pre-

served in this case. Since we never really know the parameters exactly, understanding

the knife-edge case is a mere mathematical curiosum rather than important economics.

3 Preserving Capital with Smooth Spending

Instead of making spending strictly proportional to the size of the endowment, it is

common to smooth spending using a moving-average (partial adjustment) rule to move

from current spending towards a spending target. Probably there is some economic

sense to smoothing spending, since a sudden decrease in a budget can cause distress,

while a sudden increase can invite waste. As a result, many endowments use some

kind of smooth spending formulas. For instance, several universities in the UC system

use smooth spending policy (Mercer Investment Consulting (2015)): UC Berkeley, UC

Irvine, and UC Santa Cruz plan to spend about 4.5% of a twelve-quarter (three year)

moving average market value of the endowment pool. Another example: Grinnell

College Endowment (2014) states that endowment distribution is calculated as 4.0% of

the 12-quarter moving average endowment market value determined annually as of the

December 31 immediately prior to the beginning of the fiscal year. Actually, according

to Commonfund (2005), 63 per cent of educational institutions in the US report ‘they

employ either a three-year or 12-quarter moving average of market value as a smoothing

mechanism in their spending formula (38 per cent use the three-year and 25 per cent

use a 12-quarter moving average, also see page 112, Chapter 4, Acharya and Dimson

(2007)).

However, the moving average rule tends to destabilize the endowment. We illustrate

this with a riskless example for which an initial high spending rate sends the fund into

a “death spiral” with the wealth going to zero for sure at a known finite time. Then

we give a result for risky i.i.d. returns. When risky investment returns are bad,
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wealth goes down but spending is slow to adjust so the spending rate goes up. This

pushes wealth down and at some point the fall in wealth becomes unstable because the

adjustment is not fast enough to keep the spending rate from getting large as wealth

(in the denominator) falls. In a risky investment environment, over time this scenario

will play out sooner or later, and we still have that capital is destroyed.

3.1 Benchmark: Traditional Moving Average Spending Rule:

Riskless Case

A traditional moving average spending rule assumes the dynamic of spending to be4

dSt = κ (τWt − St) dt, (9)

where τ is the target spending rate, and κ captures the adjustment speed. We will

assume τ < r, which implies that the target spending rate would preserve capital, so

our policy has a fighting chance. If the endowment only invests in a riskless bond with

constant risk-free rate r, then the wealth process is given as

dWt = rWtdt− Stdt. (10)

Assume that if Wt reaches zero, then the endowment is shut down and Wt and St are

both zero forever afterwards if wealth reaches zero. We have the following result.

Theorem 3 When the endowment only invests in a riskless asset, the moving average

spending rule (9) does not preserve capital when the initial spending rate S0/W0 is

sufficiently high. Specifically, given the dynamic (9) and (10), wealth Wt reaches 0, if

4Often practitioners use a moving average rule, e.g., a 3-year average. Using the autoregressive
rule instead simplifies the algebra without changing the economic result. The autoregressive rule is
mathematically equivalent to a moving average rule with exponentially decaying weights.
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S0/W0 is large enough, in finite time t∗, and

t∗ =
1

λ1 − λ2

ln

(

−K2

K1

)

,

where

K1 =
W0 (λ1 − r) + S0

λ1 − λ2

and K2 =
W0 (r − λ2)− S0

λ1 − λ2

,

and λ2 < 0 < λ1 is given by

λ1 =
r − κ+

√

(κ− r)2 − 4κ (τ − r)

2
and λ2 =

r − κ−
√

(κ+ r)2 − 4κτ

2
.

Proof. See subsection A.1 in Appendix.

If the endowment starts with high spending under the moving average rule, capital

will be wiped out quickly. Given a high initial spending rate, the value of a unit declines

proportionately more (due to the shortfall of interest covering spending) than spending

(due to the moving average rule). As the ratio of wealth to spending falls, this effect

accelerates and wealth converges to zero in a “death spiral.” Here is an illustration.

Example 3 (Increasing spending rate): Assume W0 = 100, S0 = 15, r = 5%,

τ = 4%, and the adjustment rate κ = 20% each year, where target rate is intentionally

set to be less than the interest rate to indicate a relatively good investment opportunity

and a potential to preserve capital. However, given a high enough initial spending rate,

the wealth declines dramatically comparing to the drop in the mean-reverting spending.

Note the wealth at the next year is

W1 = W0 (1 + r − s) = 100× (100% + 5%− 15%) = 90,

hence the wealth drops by 10. However, the adjustment of spending is

∆S = 20%× (4%× 100− 15) = −2.2,
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much less than the decrease in wealth. The disproportional change leads to a higher

spending rate in the next year:

s1 = (20− 2.2) /90 = 19.8% > 15% = s0,

even when the spending is declining. As time evolves, the spending rate becomes higher

and does not fall to zero as wealth goes to zero. The reason is that the endowment

spends not only the interest, but also an increasing fraction of the principal, which

accelerates the decline in wealth.

3.2 Traditional Moving Average Spending Rule: Risky Case

We have just seen that if the initial spending rate is high enough, an endowment

making a riskless investment and smoothing towards any positive target spending rate

will destroy capital. In this section, we show that an endowment smoothing towards

a target spending rate and risky portfolio strategy will destroy capital for any initial

spending rate. The intuition is that the random portfolio returns will lead us sooner

or later into a situation with high spending that will deplete the portfolio.

To model this, we have to make an assumption about the portfolio returns. The

portfolio choices of endowments in practice are not usually linked dynamically to the

current spending rate.5 Usually, the percentage allocations to different asset classes

have fixed target values or ranges. As a result, it is a reasonable approximation (and

will give us the correct qualitative results) to model the endowment returns as i.i.d.

Given the moving average spending rule (9), if the endowment has return with constant

mean and volatility, then the wealth process is given as

dWt = Wt (µdt+ σdZ)− Stdt

= (Wtµ− St) dt+WtσdZ, (11)

5Arguably, this is not ideal, see Dybvig (1999), but in this paper we are focusing on typical current
practice.
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so long as wealth stays positive. Also assume that zero is an absorbing barrier for

wealth, that is, if Wt reaches zero, then the endowment is shut down and Wt and St

are both zero forever afterwards if wealth ever reaches zero. We have the following

result.

Theorem 4 When the endowment uses the moving average spending rule (9) with

positive target spending rate τ , no matter how small, and the i.i.d. investment process

(11), the value of a unit hits zero in finite time (almost surely) and therefore capital is

always destroyed according to Definition 2.

Sketch of proof: Given the dynamic of wealth and spending, we can write the dynamics

of wealth over spending (which is Markov). Then find a function F of the variableWt/St

such that F (Wt/St) is a local martingale (by deriving the dynamics of F (Wt/St) using

Itô’s Lemma, and set the drift term equal to zero). Note that F (0) is finite and

F (∞) = ∞. Since F (Wt/St) is a continuous local martingale, we can change time to a

Wiener process with constant variance per unit time. We use the known properties of

the first-hitting problem with constant variance and the properties of the time change

(using the local variance of F (Wt/St)) to show that Wt/St hits zero in finite time, just

like the Wiener process we get from the state change (using F (·)) and the time change.

See subsection A.2 in Appendix for the detailed proof.

Recall that in the riskless case, wealth goes in a death spiral to zero if initial

spending is high enough, since the proportional decrease in spending does not keep up

with the proportional decrease in wealth. In the stochastic case, sufficiently bad luck

in investments over a short time depletes the wealth, increasing the spending rate to a

high level, starting a death spiral. Subsequent good luck can save the endowment, but

sooner or later the endowment will have sufficiently bad luck starting a death spiral

the endowment does not recover from.
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3.3 A Smooth Spending Rule that Preserves Capital

The problem with the traditional mean reverting spending rule is that the endowment

can spending too much when wealth is low and, thus, target spending moves away

more quickly than spending can adjust and capital is not preserved. Hence, to keep

the target within a reasonable distance, we need to change the smoothing rule. We

propose the smooth spending rule which has potential to preserve capital as

dSt = St







κ

(

log τ − log

(
St

Wt

))

︸ ︷︷ ︸

Smooth spending with target τ

+ µ− σ2/2− St

Wt
︸ ︷︷ ︸

Adjusting for over-spending








dt, (12)

where the wealth process still follows (11).

Note the term µ−σ2/2 in the drift of spending (12) is the expected log growth rate

of the endowment wealth, and term −St/Wt is the reduction in wealth from spending.

Recall the spending rule preserving capital in the previous subsection requires that

St/Wt ≤ µ − σ2/2, hence, the smooth spending rule in (12) demonstrates that if

the spending is too high, i.e., µ − σ2/2 − St/Wt < 0, then reduction in spending

at expected rate of decline in wealth is needed to preserve capital. Moreover, the

term κ (log τ − log (St/Wt)) means that on top of preservation of capital, the spending

mean reverts to the constant target level. Besides, the spending rule adjusts for the

expected change in wealth instead of the random part. As a result, the spending is

still differentiable and smooth.

With the proposed spending rule (12), we can prove the following theorem.

Theorem 5 When the endowment invests in risky assets and the wealth process fol-

lows (11), the smooth spending rule given by (12) preserves capital in the sense of

Definition 1 if and only if the parameters satisfy the following condition:

µ− σ2

2
− exp

[

log τ +
σ2

4κ

]

> 0, (13)
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while capital is destroyed if and only if the inequality is reversed.

Sketch of proof: Given the spending and wealth dynamics, log(St/Wt) is a stationary

Gaussian process and it can be derived that St/Wt is a covariance-stationary process

satisfying the condition of the ergodic theorem. Then the result follows by Corollary 1

for covariance-stationary processes of the general Theorem 4 for stationary processes

provided in Section 4. See subsection A.3 in the Appendix for the proof. �

The condition (13) means that the log growth rate of the risky asset have to be

larger than the long-term average spending rate E[St/Wt] = exp (log τ + σ2/ (4κ)) .

We can compute the long-term average because the spending rate is stationary and

lognormally distributed. When the speed κ of mean-reversion is very large, then the

spending rate is usually very close to the target spending rate τ , which is why this

converges as κ increases to the formula µ− σ2/2 > τ for a fixed spending rate τ .

4 General Condition for Preservation of Capital

The moving average spending rule in the previous section assumes continuity of un-

derlying parameters, e.g., constant volatility of endowment return and constant return

growth rate. In this section, we provide a general condition of preservation of capi-

tal which allows endowment return growth, volatility, and the spending rate to follow

numerous general types of processes.

4.1 General Condition

Suppose a return process on the endowment with local mean µt and local standard

deviation σt, where µt and σt are some general processes for which the wealth process

is well-defined, and Z is a standard Wiener process. Then the wealth dynamic follows

dWt = Wt (µtdt+ σtdZ)− Stdt = (Wtµt − St) dt+WtσtdZ,
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which implies that

Wt = W0 exp

[∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv −
∫ t

v=0

σvdZv

]

.

Then the Theorem 5 can be easily generalized to a more general case as the following

theorem.

Theorem 6 Given some general stochastic processes of µv, σ
2
v , and sv, and for ∀v > 0,

σv > 0 and sv > 0, and the following limit exist

lim
t→∞

1

t
E

[∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv

]

= B, (14)

lim
t→∞

1

t2
Var

[∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv −
∫ t

v=0

σvdZv

]

= 0. (15)

then the spending process preserves capital in the sense that

lim
t→∞

Pr (Wt < W0) = 0,

if and only if the limit B > 0.

Proof. See subsection A.4 in Appendix.

Note the process of µv, σ
2
v , and sv do not need to be each stationary and ergodic,

as long as the conditions are satisfied. However, these conditions might not be easily

utilized by practitioners, since they are not explicit and simple enough. Hence, we

provide some simple conditions which are the special cases of the general condition

and capture the basic properties of growth rate, volatility, and spending rate in the

real world, and obtain the following corollary.

Corollary 1 Assume µv and σ2
v are covariance-stationary, and sv is ergodic, then the

endowment capital is preserved if and only if

E
[
µv − σ2

v/2
]
> E [sv] .
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Moreover, by the general condition, we can study some interesting cases: spending

with temporarily negative real risk-free rate and spending with stochastic volatility.

4.2 Preserving Capital with Temporarily Negative Real Risk-

Free Rate

These calculations by practitioners are done in real terms (as they should be). An

interest rate environment like the current one where inflation exceeds the nominal rate

is a special challenge. The endowment never preserves capital if the expected real

risk-free rate of return is always negative. For example, if investments in real riskless

bonds are available but the local expectations hypotheses holds, then given a little

regularity, no strategy with non-negative spending will preserve capital if the long-term

expected short real interest rate is negative. However, under some conditions, capital

can be persevered even if the real expected rate of return is temporarily negative. This

subsection models temporarily negative real rate and provides the conditions needed

for preserving capital by employing the results of Theorem 6.

Let the nominal interest rate rt modeled by some diffusion processes. Hence, the

stock price follows a diffusion process as

dPt

Pt

= (rt − ι+ π) dt+ σdZt, (16)

where ι is a constant inflation rate and π is a constant risk premium. With a fixed

portfolio θ in stock, the wealth process follows,

dWt = (rt − ι)Wtdt+Wtθ (σdZt + πdt)− Stdt,

= Wt ((rt − ι+ θπ) dt+ θσdZt)− Stdt.

Employing the results in Theorem 6, we can obtain the following theorem:

Theorem 7 Assume the stock price process follows (16), and the endowment has a
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constant portfolio in stock, the endowment can preserve capital if and only if

E

[

rt − ι+ θπ − θ2σ2

2

]

> E [st] , (17)

where the spending rate st is covariance-stationary process.

By Theorem 7, we can cannot gain a high expected log rate of return after taking

return volatility into account, which is different from the implausible implications of

the traditional rule in Subsection 2.2. Since the quadratic function with a negative

coefficient of the second order term is capped over the choices of portfolio.

Now we can provide examples of spending rule with negative real interest rate, both

rules preserving capital and rules not preserving capital.

Example 4 (Successful preservation of capital with temporarily negative real

rate): Let the nominal interest rate follows a CIR model, i.e.,

drt = a0 (b− rt) dt+ σ
√
rtdZt, (18)

where a0 is a constant adjustment speed, and b is the long-term mean of the nominal

interest rate. Let the spending rule be a modified moving average rule which potentially

preserves capital, following the form of spending (12) as

dSt = St

(

κ

(

log τ − log

(
St

Wt

))

+ rt − ι+ θπ − θ2σ2

2
− St

Wt

)

dt,

which, by the results in Theorem 5, implies that E[st] = exp [log τ + σ2/ (4κ)] .

Given ι = 4%, b = 4%, π = 5%, σ = 15%, θ = 0.8, τ = 3% and κ = 1, then the

expected real interest rate is zero, just quite similar to real rate in the current financial

market. However, the spending still can be covered by a high enough risk premium.

Consequently, in a long horizon, the capital can be preserved. For instance, suppose

at a point of time, the inflation rate is 4% and the real rate is −4%, then given the

risk premium is 5% and the endowment cannot cover a positive spending rate with a
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negative return at this point. However, capital is still preserved since when during a

good time, say, real interest rate is 8% and, thus, the expected return of portfolio is

13%. If the endowment still has the target spending rate, then capital is preserved.

To sum up, the point is that preservation of capital is not about a point of time, it is

about the whole paths of underlying dynamics. Finally, by applying Theorem 7, it is

easy to see condition (17) is satisfied, since

b− ι+ θπ − θ2σ2

2
− exp

[

log τ +
σ2

4κ

]

= 0.0024 > 0,

hence, capital is preserved.

Example 5 (Unsuccessful preservation of capital with temporarily negative

real rate): Given ι = 6%, E[rt] = 0, π = 5%, and σ = 15%, then no choice of a

fixed portfolio θ can preserve capital locally. Since even the portfolio which maximizes

the growth rate of log wealth, i.e., θ = π/σ2 maximizing θπ − θ2σ2/2, cannot preserve

capital. Note according to (17) in Theorem 7, we can calculate the expected log turn

with highest growth rate:

E [rt]− ι+ θπ − θ2σ2

2
= E [rt]− ι+

π2

2σ2
= −0.0044 < 0,

which is a negative number. However, expected spending cannot be negative. Hence,

(17) is not satisfied, and capital is not preserved due to a too high expected inflation

and a too low expected nominal interest rate. There are also good reasons not to take

on so much leverage. If θ = 0.8, and ι = 3.5%, then capital is still not preserved, since

E [rt]− ι+ θπ − θ2σ2/2 = −0.0022 < 0.

Example 6 (Preservation of capital by spending rule with stochastic volatil-

ity): Assume the spending rate is given as an affine function of nominal interest rate,
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i.e.,

st = S0 + S1rt,

where rt is the nominal interest rate following the CIR model (18), with S0 > 0, and

0 < S1 < 1. Therefore, the spending rate is covariance-stationary and always positive,

and has stochastic volatility. Then we have

E [st] = S0 + S1E [rt] .

Given ι = 4%, b = 4%, π = 5%, σ = 15%, θ = 0.8, S0 = 3%, and S1 = 0.6, we have

capital preserved, since according to (17) in Theorem 7, we have

b− ι+ θπ − θ2σ2

2
− (S0 + S1E [rt]) = (1− S1) b− ι+ θπ − θ2σ2

2
− S0 = 0.0088 > 0.

Note it is possible that at some point, the nominal rate reaches zero, meanwhile,

the spending rate is positive. However, even this case happens, the endowment can

still preserve capital. Since, again, preservation of capital is not about several points

of times, it is about an infinitely long horizon. Hence, even the expected log real rate

of the assets can be less than the spending rate when the interest rate is temporarily

low, however, the turn of assets can well cover the spending when interest rate is high.

Consequently, capital is preserved.

5 Optimization Models

We have been emphasizing preservation of capital as a constraint facing by the universi-

ties. The traditional practice by endowments postulates a candidate portfolio strategy

and spending rule, followed by a check of what parameter values, e.g., spending rate

target and portfolio weights, are consistent with preservation of capital. Alternatively,

we can impose preservation of capital as a constraint in an optimization problem. Un-

fortunately, the traditional rule we have been studying is not up to this task. We
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investigate this in the following Problem 1.

Problem 1 Given the initial wealth W0, choose adapted portfolio process {θt}∞t=0,

adapted spending process {St}∞t=0 and wealth process {Wt}∞t=0 to maximize the expected

utility,

sup
θ,S

E

[∫ ∞

t=0

Dtu (St) dt

]

s.t. dWt = rWtdt+ θt ((µ− r) dt+ σdZt)− Stdt,

∀t, Wt ≥ 0,

plim
t→∞

Wt = ∞. (19)

where the utility function u : ℜ+ → ℜ is concave and increasing. It is assumed that

µ− r, σ, and r are all positive and the discount factor Dt ≥ 0, and

0 <

∫ ∞

s=0

Dsds < ∞.

The constraint (19) is preservation of capital according to Definition 1. The functional

form of the objective function is flexible enough to accommodate the short-term orien-

tation of a college president who does not value spending beyond the end of his term.

For example, if he is confident his term will end by time T , he may have Dt = 0 for all

t > T .

The weakness of the constraint is that it concerns only the infinite limit, but does not

restrict what happens at intermediate dates. And, due to the miracle of compounding,

it only takes a small amount of money set aside to satisfy the condition that a unit

grows without limit over time. Intuitively, we can put almost 100% of the endowment

in our favorite strategy absent the constraint on preservation of capital and two cents

in a strategy that preserves capital, to achieve almost the same utility as our favorite

strategy. In this way, we can make the impact of the constraint on both our strategy

and our utility negligible. Here is the formal statement:
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Theorem 8 Let S∗
t , θ

∗
t , and W ∗

t be the feasible spending, risky asset portfolio and

wealth processes with finite value for Problem 1 without the preservation-of-capital con-

straint (19). Then the supremum in Problem 1 is at least the value of following this

strategy. Specifically, there exists a sequence
(
θkt , S

k
t

)
of feasible policies such that

lim
k→∞

E

[∫ ∞

t=0

Dtu
(
Sk
t

)
dt

]

≥ E

[∫ ∞

t=0

Dtu (S
∗
t ) dt

]

.

Proof. See subsection A.5 in Appendix.

Theorem 6 implies that the traditional definition of preserving capital does not

have teeth when included in an optimization model as a constraint. In the following

subsection, we discuss some alternative and stricter definitions of preserving capital

and their implications.

5.1 Preservation of Capital in Optimization Models

Preservation of capital and smoothed spending are two desirable features of an op-

timization models for endowments. To make the wealth constraint more effective in

preservation of capital, we can impose the drawdown constraint introduced by Gross-

man and Zhou (1993), which requires that wealth can never fall below a certain per-

centage of the previous maximum of wealth, i.e., for some given β ∈ (0, 1) and for all

times t,

Wt ≥ β sup
s≤t

Ws.

The drawdown constraint carries a strong sense of preservation of capital, since it adds

requirements on intermediate wealth. This forms a contrast to the implications of

traditional definition of preserving capital that the wealth converges to infinity ap-

proximately for sure, which sounds pretty conservative but actually is not. Elie and

Touzi (2006) treat an optimization problem with a drawdown constraint; Rogers (2013)

gives a concise exposition of their main results. The solution is given in the dual and
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is analytical up to some constants determined numerically. To apply their model to

endowment management, we should probably modify it to consider the benefits of

smoothing and add other practical considerations. However, even without additional

features, considering both the drawdown constraint the value of smoothing is com-

plex, since already we have three state variables, spending, wealth, and the previous

maximum wealth, and, depending on how smoothing is modeled, a subtle boundary

problem. With the property of homogeneity of power utility function, we can reduce

the number of state variables to two, but the solution will be difficult.

Formulating and solving a problem incorporating preference for smoothed spending

seems to be difficult even without an effective preservation-of-capital constraint. A

natural way to model the desirability of smoothing spending is to incorporate a cost of

changing spending, either in the felicity function or in the budget constraint. Moreover,

a quadratic cost term can capture the idea that a larger rate of change in spending

leads to a higher adjustment cost. However, we do not know how to solve this problem,

stated below, except numerically.

Consider the portfolio problem faced by an endowment choosing to allocate wealth

between a riskless asset and a single risky investment (presumably a portfolio of equi-

ties) whose price process evolves according to

dPt

Pt

= µPdt+ σPdZt.

The instantaneous riskless rate is r. To simplify interpretation later, we assume without

loss of generality that µP > r, so that the risky asset is an attractive investment. As-

sume the endowment has incentive to smooth spending, the problem of the endowment

can be described as follows.

Problem 2 Given the initial wealth W0 and initial spending S0, choose an adapted

portfolio process {θt}∞t=0 and an adapted rate-of-change-of-spending process {δt = S ′
t}∞t=0
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to maximize expected utility,

max
θ,δ

E

[∫ ∞

t=0

e−ρt St
1−R

1−R
dt

]

s.t. dWt = rWtdt+ θt ((µP − r) dt+ σPdZt)− Stdt− k
δ2t
St

,

dSt = δtdt.

∀t, Wt ≥ 0.

where ρ is the pure rate of time preference, and R is the constant relative risk aversion.

It is assumed that µP − r, ρ, σP , k, and r are all positive constants.

Denote the value function of the endowment as V. The HJB equation is given by

u (Ss)− ρV + VW

(

rW + θ (µP − r)− St − k
δ2t
St

)

+ δtVS +
σ2
P θ

2

2
VWW = 0.

By the first-order condition, the optimal choice of change of spending is given as

δt =
StVS

2kVW

.

Substitute the optimal change in spending into the HJB equation, we have

u (Ss)− ρV + VW (rW + θ (µP − r)− St) +
StV

2
S

4kVW

+
σ2
P θ

2

2
VWW = 0.

We can simplify it by let x ≡ W/S, and Θ ≡ θ/S, and conjecture V (S,W ) =

S1−Rv (x) . As a result, we have

VW (W,S) = S−Rvx, VWW (W,S) = S−R−1vxx, and VS = (1−R)S−Rv (x)− S−Rxvx.

The HJB equation is thus simplified and transferred into

σ2
PΘ

2

2
vxx +

((1−R) v − xvx)
2

4kvx
+ vx (rx+Θ(µP − r)− 1)− ρv +

1

1−R
= 0. (20)
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Again by first-order condition, we have the optimal scaled portfolio in stock given as

Θ = −vx (µP − r)

σ2
Pvxx

,

and substitute it into (20) we have,

−v2xκ
2

2vxx
+

((1−R) v − xvx)
2

4kvx
+ (rx− 1) vx − ρv +

1

1−R
= 0.

We do not know how to solve this ODE analytically in the primal or the dual.

6 Conclusion

Two commonly used rules of thumb used for managing endowments that are supposed

to preserve capital actually do not preserve capital. Having a spending rate less than the

expected return on assets is not strong enough and is based on a fallacious application

of the law of large numbers. A correct analogous criterion would take logs. We can

think of an approximate criterion (correct for a lognormal world) that the spending

rate has to be less than the mean return on the portfolio minus half the variance.

The second rule of thumb that has problems is the use of a moving average rule to

smooth spending. This type of rule never preserves capital in a model where returns

are random and i.i.d. We provide alternative rules that smooth spending but in a way

that preserves capital for appropriate choice of parameter values.

Although optimization method is a standard approach to decision making on in-

vestment and spending in academia of finance, it is less useful for practitioner than we

think. Because most of the problems practitioners facing are more complicated than

what we know how to solve. The optimization methods work well on finding optimal

solutions, while they are not good at identifying weakness in the assumption that one

is making. Consequently, to make our results to be readily utilized by practitioners,

we stick to the simple and non-optimization models.
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We hope our results will help universities to do a better job managing their endow-

ments.
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A Appendix

A.1 Proof of Theorem 3

Proof. We can rewrite (9) and (10) as

d

(
Wt

St

)

= A

(
Wt

St

)

dt,

where

A =




r −1

κτ −κ



 .

The above ODE can be solved by using an eigenvalue-eigenvector decomposition of A.

The solution is given as

(
Wt

St

)

= K1e
λ1tφ1 +K2e

λ2tφ2,
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where λ2 < 0 < λ1 is given by

λ =
r − κ±

√

(κ− r)2 − 4κ (τ − r)

2
=

r − κ±
√

(κ+ r)2 − 4κτ

2
,

which are the two roots of the eigenvalue equation det(A − λI) = 0, and φi =

(1, r − λi)
⊺ . Note that 0 < r − λ1 < r − λ2, so that if S0/W0 > r − λ2 (say after

an unanticipated negative shock to wealth), then K2 > W0 and K1 = W0 − K2 < 0,

so wealth goes to zero in finite time and, thus, capital is not preserved in this case.

Specifically, let the time that wealth reaches zero be t∗, then we have

Wt = K1e
λ1t

∗

+K2e
λ2t

∗

= 0 ⇐⇒ e(λ1−λ2)t∗ = −K2

K1

⇐⇒ t∗ =
1

λ1 − λ2

ln

(

−K2

K1

)

,

where

K1 =
W0 (λ1 − r) + S0

λ1 − λ2

and K2 =
W0 (r − λ2)− S0

λ1 − λ2

.

�

A.2 Proof of Theorem 4

We want to show that wealth in a unit of endowment hits zero in finite time with

probability 1. The dynamics of spending and wealth are given as

dSt = κ (τWt − St) dt, (21)

dWt = Wt (µdt+ σdZt)− Stdt, (22)

until (and unless) we reach the absorbing barrier Wt = 0, in which case Wt = St = 0

forever afterwards. Define

Ut ≡







0 if Wt = 0

Wt/St otherwise
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By Itô’s lemma,

dUt =







(−1 + (µ+ κ)Ut − κτU2
t ) dt+ UtσdZt if Ut > 0

0 otherwise

Note that spending St remains positive so long as wealth is positive. Therefore, wealth

first hits zero when Ut hits zero, and we want to show this happens in finite time.

We are going to use a martingale sample-path approach to proving our result; see

Rogers and Williams [1989, IV.44-51] for more details. In essence, we are applying

their Theorem V.51.2(ii), but there is a lot of notation to set up before getting to

that point. We want to find a C2 function F : ℜ++ → ℜ such that F (Ut) is a local

martingale, i.e. has no drift. By Itô’s lemma, we have

dF (Ut) =







F ′ (Ut) [(−1 + (µ+ κ)Ut − κτU2
t ) dt+ UtσdZt]

+ 1
2
F ′′ (Ut) (σUt)

2 dt if Ut > 0

0 otherwise

.

The drift of F (Ut) is always 0 if and only if F satisfies

F ′ (u)
(
−1 + (µ+ κ)u− κτu2

)
+

1

2
F ′′ (u) (σu)2 = 0 (23)

One solution is

F (U) =

∫ U

u=0

exp

(

−2(µ+ κ) log(u)

σ2
− 2

σ2u
+

2κτu

σ2

)

du.

We will show momentarily that the integral exists, and given that existence, the con-

dition (23) can be verified by direct calculation. For existence of the integral, first note

that in the argument to the exponential, the term −2/(σ2u) dominates when u ↓ 0 (so

the integrand tends to 0), and the term 2κτu/σ2 dominates when u tends to infinity,

so the integrand tends to infinity. Therefore, the integrand is finite, positive, and con-

tinuous everywhere, and the integral exists. Furthermore, since the integrand is always
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positive, F ′(u) > 0 and since the integrand increases without bound as u increases,

limu↑∞ F (u) = ∞. Furthermore, F (0) = 0 is finite.

Since Qt ≡ F (Ut) is a continuous local martingale, it is a time-changed Wiener

process (perhaps on an augmented probability space). Specifically, there is a Wiener

process Bs starting at Q0 with variance one per unit time, and an increasing and

continuous change of time function v : [0,∞) → [0,∞) with v(0) = 0, such that

Qv(s) = Bs. Matching the cumulative variance, the time change can be computed

as v(s) = Σ−1(s) where the random process Σ(t) =
∫ t

z=0
var(dQz), the cumulative

variance (or quadratic variation) process for Qt in the original time frame. Applying

Itô’s Lemma to Qt = F (Ut), we have

dQt = F ′(Ut)σUtdZt (24)

and therefore

var(dQt) = (F ′(Ut))
2σ2U2

t dt. (25)

Since F is one-to-one, Ut = F−1(Qt), and therefore the rate of time change is a function

of Qt. This allows a characterization of whether the boundary Ut = 0 is hit in finite

time.

In the time-changed version, Bs is a standard Wiener process, so Bs hits zero in

finite time, say the first time at H0. Therefore, Qt hits zero in finite time if v−1(H0) is

finite. Now, the spatial density of occupation for any location q over the time interval

[0, s] is given by the local time lqs of the process Bs, and in particular, for any real-valued

function g that is continuous on (0,∞),

∫ H0

s=0

g(Bs)ds =

∫ ∞

q=0

lqH0
g(q)dq

=

∫ 1

q=0

lqH0
g(q)dq +

∫ ∞

q=1

lqH0
g(q)dq,

Now the second term is finite a.s., since Bs is continuous and therefore bounded on the
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compact interval [0, H0], and lqH0
is always positive with

∫∞

q=0
lqH0

= H0. Furthermore,

we can use the result (Rogers and Williams [1987], V.51.1(i)) to that for all y > 0,

E[lqH0
] = min(q,Q0) to show that the first term is finite a.s. iff

∫ 1

q=0
qg(q)dq < ∞ (see

Rogers and Williams [1987], proof of IV.51.2(ii), for details). Now let

g(q) ≡ 1

(F ′(F−1(q))σF−1(q))2
. (26)

This is of interest because d(v−1(s))/ds = g(Bs), so for this definition of g,
∫ H0

s=0
g(Bs)ds =

v−1(H0), exactly what we need to prove to be bounded. Now,

∫ 1

q=0

qg(q)dq =

∫ 1

q=0

1

(F ′(F−1(q))σF−1(q))2
qdq

=

∫ F−1(1)

U=0

1

(F ′(U)σU)2
F (U)F ′(U)dU

=

∫ F−1(1)

U=0

F (U)

F ′(U)σ2U2
dU.

All we have left to show is that this integral is finite. The integrand is continuous on

(0, F−1(1)], so it suffices to show is that it has a finite limit at 0. Using L’Hôpital’s

rule and (23), we have

lim
U↓0

F (U)

F ′(U)σ2U2
= lim

U↓0

F ′(U)

F ′′(U)σ2U2 + 2F ′(U)σ2U
(27)

= lim
U↓0

1

σ2U2F ′′(U)/F ′(U) + 2σ2U
(28)

=
1

2 + 0
(29)

or 1/2, which is finite. �
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A.3 Proof of Theorem 5

The spending and wealth dynamics are

dSt =

(

St

(

κ

(

log τ − log

(
St

Wt

))

− St

Wt

+ µ− σ2

2

))

dt

and

dWt = Wt (µdt+ σdZ)− Stdt.

Then, by Itô’s lemma, log(St/Wt) is an Ornstein-Uhlenbeck velocity process

d log

(
St

Wt

)

= κ

(

log τ − log

(
St

Wt

))

dt− σdZt,

which has the moving average representation (which we condition on S0/W0)

log

(
S0

W0

)

= log τ − σ

∫ 0

−∞

eκtdZv,

hence, the process of log (St/Wt) is stationary with constant mean, variance, and au-

tocovariance

E

[

log

(
St

Wt

)]

= log τ,

Var

[

log

(
St

Wt

)]

=
σ2

2κ
,

Cov

[

log

(
Sv

Wv

)

, log

(
St

Wt

)]

=
σ2

2κ
e−κ|t−v|.

As a result, St/Wt is log-normal distributed with mean, variance, and autocorrelation

E

[
St

Wt

]

= exp

(

log τ +
σ2

4κ

)

,

Var

[
St

Wt

]

=

(

exp

(
σ2

2κ

)

− 1

)

exp

(

2 log τ +
σ2

2κ

)

,

Cov

[
Sv

Wv

,
St

Wt

]

=

(

exp

(
σ2

2κ
e−κ|t−v|

)

− 1

)

exp

(

2 log τ +
σ2

2κ

)

.
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Note that the autocovariance depends only on the lag |t− v| and not on time t. There-

fore, St/Wt is also covariance stationary.

We now prove it is a mean-square ergodic process. Note the integral time scale of

the stationary random process St/Wt is given as

Υint =
1

(
exp

(
σ2

2κ

)
− 1

)
exp

(
2 log τ + σ2

2κ

)

∫ ∞

0

(

exp

(
σ2

2κ
e−κϕ

)

− 1

)

exp

(

2 log τ +
σ2

2κ

)

dϕ

=
1

exp
(
σ2

2κ

)
− 1

∫ ∞

0

(

exp

(
σ2

2κ
e−κϕ

)

− 1

)

dϕ.

Let

u =
σ2

2κ
e−κϕ =⇒ 2κ

σ2
u = e−κϕ =⇒ −κϕ = log

(
2κ

σ2
u

)

=⇒ −κdϕ = d log

(
2κ

σ2
u

)

=⇒ −κdϕ =
2κ

σ2

σ2

2κu
du =⇒ −κdϕ =

1

u
du =⇒ dϕ =

1

−κu
du,

hence, we have

∫ ∞

0

(

exp

(
σ2

2κ
e−κϕ

)

− 1

)

dϕ = −
∫ 0

σ2

2κ

eu − 1

κu
du =

1

κ

∫ σ
2

2κ

0

eu − 1

u
du.

Note

lim
u→0

eu − 1

u
= lim

u→0

eu

1
= 1,

and (eu − 1) /u strictly increases in u, hence,

1 ≤ eu − 1

u
≤ 2κ

σ2

(

e
σ
2

2κ − 1
)

, where 0 ≤ u ≤ σ2

2κ
.

Therefore,
∫ σ

2

2κ

0

eu − 1

u
du < ∞ =⇒ Υint < ∞.

Hence, based on the Mean-Square Ergodic Theorem (Finite Autocovariance Time), 6

6The original proof of the ergodic theorem was in von Neumann (1932). It is based on the spectral
decomposition of unitary operators. Later a number of other proofs were published. The simplest is
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we have that the process St/Wt is mean-square ergodic in the first moment, i.e.,

lim
t→∞

1

t

∫ t

v=0

Sv

Wv

dv = exp

[

log τ +
σ2

4κ

]

,

the average converges in squared mean over time. According to the properties of mean-

square ergodic convergence, we have

lim
t→∞

E

[
1

t

∫ t

v=0

Sv

Wv

dv

]

= exp

[

log τ +
σ2

4κ

]

, (30)

lim
t→∞

Var

[
1

t

∫ t

v=0

Sv

Wv

dv

]

= 0. (31)

By the definition of preservation of capital, to prove the spending rule preserves

capital, we need to prove

plim
t→∞

log
Wt

W0

= ∞.

Note

Wt = W0 exp

[(

µ− σ2

2

)

t− σZt −
∫ t

v=0

Sv

Wv

dv

]

,

hence, we have

log
Wt

W0

=

(

µ− σ2

2
− 1

t

∫ t

v=0

Sv

Wv

dv

)

t− σZt,

=⇒ 1

t
log

Wt

W0

= µ− σ2

2
− 1

t

∫ t

v=0

Sv

Wv

dv − σ

t
Zt.

According to the Chebyshev’s inequality, we have for ∀ǫ > 0,

Pr

(∣
∣
∣
∣

1

t
log

Wt

W0

− E

(
1

t
log

Wt

W0

)∣
∣
∣
∣
≥ ǫ

)

≤
Var

(
1
t
log Wt

W0

)

ǫ2
. (32)

Moreover, note

Zt ∼ N (0, t) , and − σ

t
Zt ∼ N

(

0,
σ2

t

)

,

due to F. Riesz, see Halmos (1956).
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and
1

t

∫ t

v=0

Sv

Wv

dv
L2

→ exp

[

log τ +
σ2

4κ

]

,

hence, based on the results of (30) and (31), we have as t → ∞,

E

(
1

t
log

Wt

W0

)

= µ− σ2

2
− exp

[

log τ +
σ2

4κ

]

, and Var

(
1

t
log

Wt

W0

)

=
σ2

t
.

Then according (32), we have as t → ∞,

Pr

(∣
∣
∣
∣

1

t
log

Wt

W0

−
(

µ− σ2

2
− exp

[

log τ +
σ2

4κ

])∣
∣
∣
∣
≥ ǫ

)

≤ 0.

Since probability cannot be negative, hence, we have as t → ∞, for ∀ǫ > 0

Pr

(∣
∣
∣
∣

1

t
log

Wt

W0

−
(

µ− σ2

2
− exp

[

log τ +
σ2

4κ

])∣
∣
∣
∣
≥ ǫ

)

= 0.

Therefore, according to the definition of convergence in probability, we have

plim
t→∞

(
1

t
log

Wt

W0

)

= µ− σ2

2
− exp

[

log τ +
σ2

4κ

]

.

By the condition (13)

µ− σ2

2
− exp

[

log τ +
σ2

4κ

]

> 0,

hence, we have

plim
t→∞

(

log
Wt

W0

)

= ∞ =⇒ lim
t→∞

Pr (Wt < W0) = 0.

Given

µ− σ2

2
− exp

[

log τ +
σ2

4κ

]

< 0,

we have

plim
t→∞

(

log
Wt

W0

)

= −∞ =⇒ lim
t→∞

Pr (Wt < W0) = 1,

39



which completes the proof. �

A.4 Proof of Theorem 6

By the definition of preservation of capital, to prove the spending rule preserves capital,

we only need to prove

plim
t→∞

log
Wt

W0

= ∞.

Note

dWt = Wt (µtdt+ σtdZ)− Stdt = (Wtµt − St) dt+WtσtdZ,

implies that

Wt = W0 exp

[∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv −
∫ t

v=0

σvdZv

]

.

Hence, we have

log
Wt

W0

=

∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv −
∫ t

v=0

σvdZv

=⇒ 1

t
log

Wt

W0

=
1

t

∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv − 1

t

∫ t

v=0

σvdZv.

According to the Chebyshev’s inequality, we have for ∀ǫ > 0,

Pr

(∣
∣
∣
∣

1

t
log

Wt

W0

− E

(
1

t
log

Wt

W0

)∣
∣
∣
∣
≥ ǫ

)

≤
Var

(
1
t
log Wt

W0

)

ǫ2
. (33)

and based on the condition (14), as t → ∞, we have

E

(
1

t
log

Wt

W0

)

= E

[
1

t

∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv − 1

t

∫ t

v=0

σvdZv

]

= E

[
1

t

∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv

]

→ B > 0,
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since as t → ∞,

E

[∫ t

v=0

σvdZv

]

= 0.

Moreover, we have the condition on the variance (15), i.e., as t → ∞,

Var

[
1

t
log

Wt

W0

]

=
1

t2
Var

[∫ t

v=0

(

µv −
1

2
σ2
v − sv

)

dv −
∫ t

v=0

σvdZv

]

→ 0.

Therefore, we have as t → ∞,

Pr

(∣
∣
∣
∣

1

t
log

Wt

W0

−B

∣
∣
∣
∣
≥ ǫ

)

≤ 0.

Since probability cannot be negative, hence, we have as t → ∞, for ∀ǫ > 0

Pr

(∣
∣
∣
∣

1

t
log

Wt

W0

− B

∣
∣
∣
∣
≥ ǫ

)

= 0.

Therefore, according to the definition of convergence in probability, we have

plim
t→∞

(
1

t
log

Wt

W0

)

= B.

By the condition (13), if B > 0, hence, we have

plim
t→∞

(

log
Wt

W0

)

= ∞ =⇒ lim
t→∞

Pr (Wt < W0) = 0.

Given B < 0, we have

plim
t→∞

(

log
Wt

W0

)

= −∞ =⇒ lim
t→∞

Pr (Wt < W0) = 1,

which completes the proof. �
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A.5 Proof of Theorem 8

Let S∗
t , θ

∗
t , and W ∗

t be the feasible spending, investment, and wealth whose value we

want to match in the limit. Consider the alternative safe strategy

Ssafe
t ≡ rW0/2, θ

safe
t ≡ 0, and W safe

t ≡ (1 + ert)W0/2.

Then we will let

Sk
t = (1− 1/(k + 1))S∗

t + (1/(k + 1))Ssafe
t ,

θkt = (1− 1/(k + 1))θ∗t + (1/(k + 1))θsafet ,

W k
t = (1− 1/(k + 1))W ∗

t + (1/(k + 1))W safe
t .

It is easy to check that this is feasible for every k. Let M be the product of probability

measure (across states) and Lebesgue measure (for positive times). Then, noting that

probability measure integrates to one, we can write the expected utility of the safe

strategy, Ssafe
t , as

∫

Dtu(S
safe
t )dM = u(rW0/2)

∫ ∞

t=0

Dtdt,

which is finite because
∫∞

t=0
Dtdt and u(rW0/2) are both finite. In other words,Dtu(S

safe
t ) ∈

L1(M). Since the strategy (θ∗, S∗,W ∗) has finite value, we also know that Dtu(S
∗
t ) ∈

L1(M). It also follows that

zmin ≡ min(Dtu(S
safe
t ), Dtu(S

∗
t )) ∈ L1(M),

and

zmax ≡ maxmin(Dtu(S
safe
t ), Dtu(S

∗
t )) ∈ L1(M).

Since (∀k)zmin ≤ Dtu(S
k
t ) ≤ zmax and Dtu(S

k
t ) converges almost-surely to Dtu(S

∗
t ),

then
∫

Dtu(S
k
t )dM →

∫

Dtu(S
∗
t )dM, as k → ∞,
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which is another way of stating the required convergence of expected utility. �
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