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Motivation

e Originally

— Model Bank Runs as a Rational Phenomenon of Multiple Equilibrium
e Additional Understanding

— New Workhorse Model of Liquidity and Banking

— Deposits as Optimal Contracts for Sharing Risk under Asymmetric Infor-
mation

e Further thoughts

— Toy model (not a realistic model)

— Simplicity (crystal or poem) for clarity and allows generalization



Results

e Bank runs can happen rationally even if bank assets are riskless (and obviously
they can still happen with bank assets are risky)

e Banks create liquidity iff runs are possible

e Improved risk sharing can be interpreted as demand for liquidity

e Bank runs can be eliminated by deposit insurance or discount window
e New role for policy in the context of multiple equilibria

— traditional role: move an equilibrium trading off benefits against distortions

— role here: eliminate a bad equilibrium but leave the good equilibrium alone



Model: bank assets

Bank asset payoffs in periods 0, 1, and 2, choice made at 1:

'1<1—»0

Asset illiquidity in technology is for convenience; illiquidity due to information
assymmetry (lemons problem) is probably more important. If the liquidation
payoff is less than 1 the results are only strengthened.



Model: depositor preferences

Agents maximize E|u(cq, co;0)|, where

[ uler) if Type 1 in state 0
Ule1,20) =1 ) + cy) if Type 2 in state 0

wis C? on R,y and C” on R,
u'(0) = oo, u'(00) =0
1>p>R!

cu(c)
u'(c)

A fraction t is of type 1 (needs liquidity). The paper analyzes ¢ constant and ¢
random, but | will only talk about ¢ constant. An agent’s type is that agent's
private information revealed at the start of time 1. There is a continuum of
agents and we will finesse the measurability issues in the usual natural way.

(Ve > 1)(— > 1)
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Endowments, Competitive and Perfect Information solutions
Endowments: 1 at time 0, 0 each at times 1 and 2

Equilibrium prices without public information: (1,1, R™1), and equilibrium con-
sumption ¢ = 1, ¢} = ¢ = 0, and ¢3 = R. This equilibrium requires no trade
if agents invest themselves: type 1's always interrupt production but Type 2’'s
never do.

Perfect information (types publicly observable at time 1): ci* = 01 = 0 (patient
people consume later and impatient people consume earlier), u/(c{*) = pRu’(c3*)
(marginal rates of substitution in production and consumption are equal), and
tet* + (1 —t)c** /R = 1 (the resource constraint). Because pRR > 1 and relative
risk aversion > 1, it can be shown that ¢i* > 1 and ¢3* < R. This optimal
allocation is in fact incentive-compatible (since c¢'* < ¢**), so we should be able
to find a mechanism to implement it.



Competitive Model: Choice Problem

Choose nonnegative ci, ci, ¢, c3, and I, and choose L; and Ly in [0,1], to
maximize tu(cy) + (1 — t)pu(ci + ¢3)
subject to:

pict +pacy = po(1 —I) +pi I Ly +poI(1 — LR
and
pici + pac; = po(1 = I) + prILy + poI (1 — Lo)R
Market clearing: [I =1, [(tL1+ (1 —t)Lo)I = [(tc; + (1 — t)c?), and
Rf(1— (tLy+ (1 —t) L)) = [(tch + (1 —t)c3)

EqU|I|br|um po=1p =1 p =R
ci=1,c=R c=ct=0
I many solutions, all have total investment /I =1
L1,Ly many solutions, all have total liquidation [(tL; + (1 —t)Lo)I =

same consumption as autarky solution I =1, L1 =1, Ly =0



Full Information Optimal Solution

Assume (correctly) a symmetric solution.

Choose nonnegative ci, ¢f, c3, and ¢ to

maximize tu(ct) + (1 — t)pu(ci + c3)
subject to:
(tep + (1 —t)cq) + (tey + (L —t)e3) /R =1

Solution:
2 1 _
ci=c =0

first-order condition:
u'(cr*) = pRu'(c5")

Since pR > 1, ¢3* > ci*. Also, RRA > 1 implies ¢i* > 1 and ¢3* < R



Banking Contracts

Per dollar invested, a bank deposit pays 71 in period 1 and pays off the residual
value in the bank (if any) in period 2. Depositors must put all their money
in the bank and they cannot trade deposits; this is an important assumption.
Depositors in the bank play a simultaneous-move game and decide whether to
withdraw based on expectations about how many others will withdraw.

Depositors arrive sequentially, each with a uniform distribution over place in line,
and the bank liquidates assets as necessary to pay each depositor until assets are
exhausted. Once assets are exhausted, the bank fails and all remaining depositors
receive nothing (whether or not they tried to withdraw).

If bank assets are not exhausted, then all depositors who do not withdraw share
equally in the assets in the last period. This “mutual bank™ assumption avoids
the necessity of modelling another agent (the bank owner) and avoids any issues
of industrial organization that are not part of what we want to study.

Note: the bank deposit contract satisfies the sequential service constraint.



Bank Depositor Withdrawal Choice Problem

For type 1 agents, withdrawing is a dominant strategy because not withdrawing
implies consumption is always 0 but withdrawing implies a positive probability of
consuming a positive amount. So we can reasonably assume that type 1 agents
always withdraw.! Note that the fraction of all agents who withdraw is therefore
f=t+(1—1t)fy €t, 1] where fy € [0, 1] is the fraction of type 2 agents who
withdraw.

Then, letting W5 be the withdrawal choice of a type 2 depositor, the type 2
depositor’'s objective function for f < 1 is

max(1—1/(fr1),0)pu(0)+min(1/(fr), 1) pu(Wari+(1—Ws) max(lff;lR, 0)).

!There are examples when elimiation of dominated strategies can lead to strange results, but not so in this model.
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Payoffs When f =1

For f =1, the factor 1 — f in the denominator indicates there is a problem and
in fact fixing the problem is a little subtle. If r; < 1, the payoff from waiting
is infinite because a single infinitessimal agent gets claim to a non-infinitessimal
residual in the bank. For r; = 1, waiting pays off R because not withdrawing
leaves just the agent’s own claim in the bank, and the agent will optimally choose
not to withdraw. This observation can be used to show that r; = 1 leads to the
autarky solution. The remaining case, when r; > 1, is the normal case and the
most interesting. In this case, f = 1 exhausts the bank’s assets even if the agent
under consideration does not withdraw, and the payoff for f =1 and 1 > 1 is
therefore

max(1 — 1/(fr1),0)pu(0) + min(1/(fry), 1)pu(Wary).
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Banking Equilibrium

For 1 < 7 < c1*, there are two types of pure strategy equilibria:
run: f=W1=Wy=1

Impatient depositors always withdraw in period 1 because consumption in period
2 is worthless to them. Patient depositors will withdraw if they think they will get
more money now than later. If r; > 1, then the bank will exhaust its money at
time 1 if everyone withdraws, so everyone withdrawing at time 1 is an equilibrium.
This is a bank run, which is purely rational, not a psychological phenomenon. If
r1 = 1, there will be no bank run, but neither will there be any improvement
over autarky.

norun: Wi =1, Wy =0,and f =t

(First-best if 71 = c{*, which implies 1fj;1R =)

This is a good equilibrium in which agents only withdraw when impatient, pro-
vided 771 is no larger than the amount that is left over if only impatient agents
withdraw.
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Technical Comments

Measure theoretic issue: if we draw uncountably many random variables indexed
by the unit interval independently, the realized function is not measurable, so the
population average does not exist. This problem was emphasized by Ken Judd.
Solutions include using the limit of a sequence economy (messy). The usually
practice of taking the population mean equal to the mean of the distribution can
be justified by Loeb measure in a hyperfinite economy (Bob Anderson) or the
measure-theoretic solution of Ed Green (unpublished article on his web site).

We want to assume u(0) finite and (Ve € [1, R]) — cu”(c)/u'(¢) > 1. This
is different from the paper, which implicitly assumes u(0) finite and explicitly
assumes (Ve € R) — cu”(¢)/u'(c) > 1. Unfortunately the two are inconsistent.

)-:
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Role of Government Policy

Usually, government policy (e.g. optimal taxation) is modelled as something (e.g.
introducing transfers) that moves the equilibrium allocation in a good direction,
usually reflecting a trade-off between a desireable outcome (transfer on income
to poor people) at the expense of some distortion (because of taxes, the marginal
rates of substitution in production and consumption are no longer equal, so that
production is not efficient).

Preventing runs in banks is different. We want a governmental policy (or private
sector fix) that will eliminate the bad equilibrium without affecting the good
equilibrium.
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Deposit Insurance, Suspension of Convertibility, and the Discount Window

To eliminate runs, we need to reassure patient depositors that there will be enough
money available to pay them off in the period 2. One way is through deposit
insurance, which will pay off the shortfall from the promise in the second period.
Given that deposit insurance is in place, the patient agents have no incentive to
withdraw in period 1 and there is no run equilibrium.

Suspension of convertibility (can be very costly if £ random). The idea is to stop
paying if too many depositors come to the bank in period 1.

Discount window (may not be credible for reasons outside the model)

Timing issues, sequential service, timing of credit injection
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Deposit Insurance

Let's focus on r; = cr. It would be nice if we could design a policy that

eliminates the run equilibrium without disrupting the optimal no-run equilibrium.
In fact, a guarantee to people that wait that they will get money back when they
wait (perhaps backed by seignorage and/or taxation authority) will do so. Let the
guarantee be G € (11, R]. A guarantee in period 2 does not affect the incentives
of a type 1 agent. For a type 2 agent, the payoff if f < 1 becomes

max(1—1/(fr1), 0)pu(0)-+min(1/(fr1), 1) pu(Wari+(1—Wa) max(*F9 R, G)),
which is decreasing in W5. Similarly, if f = 1 the payoff is
max(1 —1/(fr1),0)pu(0) +min(1/(fr1), Dpu(Wary + (1 — Wa)G),

which is also decreasing in TW5.
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Discount Window, Practical Considerations

Use of riskless borrowing at the discount window could also prevent runs, but
the policy for using the discount window would have to be designed carefully.
If unlimited borrowing is available at a low rate, there is an arbitrage and the
discount window could be used to finance investment. However, if the rate is
high it will not help the bank any (assuming the bank will repay the borrowing).
So, the central bank will probably need to use discretion in deciding there is a
run before lending, but in this case maybe it is not credible that the discount
window will necessarily be available when the bank needs it. For example, the
central bank might decide the bank is unsound and refuse access to the discount
window.

Note that deposit insurance costs the guarantor nothing in our model, but in
practice risky assets would make deposit insurance costly so that the guarantor
would have to have some type of incentive scheme and monitoring to guard
against risky assets.
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Suspension of Convertibility, Sequential Service, Random ¢

Suspension of convertibility can stop a run (for example, if only the first ¢ depos-
itors are paid off in period 1 and the rest have to wait), but such a rigid policy
can do a lot of damage if ¢ is random.

With sequential service and random ¢, in general it is optimal to offer a contract
that pays more to early withdrawers. If it were possible, it would be nice to wait
and see how many total withdrawers arrive before deciding how much money to
give everyone, but we think that is impractical.
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Review of ideas

e Bank runs can be generated by rational agent behavior, even when assets are
riskless.

e Bank deposits can improve on the competitive outcome because they provide
liquidity.

e Providing liquidity improves risk sharing, but makes runs possible.
e The basic approach can be used to model many issues in banking.

e The basic approach can also be used to model liquidity in many contexts.

more on policy:
Diamond, Douglas W., and Philip H. Dybvig, 1986, “Banking Theory, Deposit
Insurance, and Bank Regulation,” Journal of Business 59, 5568

some recent work:
http://phildybvig.com /somepapers.html
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