1. (mean and variance) Consider a model of stock returns using a trinomial model. The stock return in any period is 100% with probability 0.2, 0% with probability 0.6 and −50% with probability 0.2.

A. Compute the expected return $E[\tilde{r}]$.

B. Compute the variance of return $\text{var}[\tilde{r}]$.

C. Compute the standard deviation of return $\text{std}[\tilde{r}]$.
2. (skewness and kurtosis) Compute the skewness and kurtosis for the following three probability distributions:

A. The stock return is $+40\%$ with probability 0.5 and -30% with probability 0.5:

$$\tilde{r} = \begin{cases}
40\% \\
0.5 \\
-30\%
\end{cases}$$

B. The stock return is $+100\%$ with probability 0.001, $+40\%$ with probability 0.499, and -30% with probability 0.5:

$$\tilde{r} = \begin{cases}
100\% \\
0.001 \\
40\% \\
0.5 \\
-30\%
\end{cases}$$
C. The stock return is +40% with probability 0.5, −30% with probability 0.499, and −100% with probability 0.001:

D. Interpret the change in skewness and the change in kurtosis in moving from case A to case B and from case A to case C.
3. Consider the following stock returns for three years:

<table>
<thead>
<tr>
<th>year</th>
<th>ABC</th>
<th>XYZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>2001</td>
<td>-40%</td>
<td>50%</td>
</tr>
<tr>
<td>2002</td>
<td>10%</td>
<td>-30%</td>
</tr>
</tbody>
</table>

A. Compute the sample means, variances, and covariance of the two stock returns.

B. Compute the estimate of the regression coefficient of the return of ABC stock on the return of XYZ stock.

C. If XYZ stock has a bad year next year, do you expect ABC stock to do well?

D. (extra for experts) Do you think holding shares of ABC can be used to hedge holding shares of XYZ?