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Abstract

Endogenous choice of when to retire has an interesting impact on optimal portfolio choice and

consumption, whether or not it is possible to borrow against labor income. When retirement is

voluntary, human capital is negatively correlated with the stock market even when the wage itself

is not. This negative correlation implies more stock investment than with a mandatory exogenous

retirement date. Portfolio choice can jump down at voluntary retirement; consumption can jump

up or down. Inability to borrow limits hedging and reduces the value of labor income, the wealth-

to-wage ratio threshold for retirement, and the stock investment. If the wage correlates positively

enough with the market, stock investment may start negative and increase over time, even when the

risk premium is positive. This contradicts brokers’ traditional advice that young investors should be

aggressive and older investors should be conservative.
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I. Introduction

Retirement is one of the most important economic events in a worker’s life. Not surprisingly, retire-

ment is connected to a number of important personal decisions such as consumption and investment

and also to policy issues such as those on insurance and pensions, as well as mandatory versus vol-

untary retirement.1 In this paper, we extend recent advances in finance to build a tractable optimal

consumption and investment model with voluntary or mandatory retirement, and with or without a

non-negative wealth constraint (which prevents borrowing against future wages). This paper solves

three models for which more or less complete solutions are available. A companion piece studies

explicit dependence of the mortality rate, wage, and preference for working on the stage of life. It

is hoped that these models and extensions will be useful for studying policy questions in insurance

and retirement.

We consider three models in our analysis. The three models vary in the treatment of retirement

and borrowing against future labor income. All three models share a number of common features: a

constant hazard rate of mortality, different preferences for consumption before and after retirement,

possibly stochastic labor income, bequest, and actuarially fair life insurance. Keeping these features

the same makes it easy to perform a parallel comparison of the three models. All three models

consider retirement to be irreversible, emphasizing that a worker may be much more valuable to a

firm working full-time than working part-time, as pointed out by Gustman and Steinmeier [1986].

This is an extreme alternative to models with a continuously variable labor-leisure choice, as in

Jun Liu and Neis [2002]. We have also looked at models with both types of choice, allowing the

possibility of a return to part-time work at a lower wage after retirement, but not in this paper.

The first model is a benchmark case with a fixed retirement date, which we interpret as manda-

tory retirement.2 Our first model is a close relative of the Merton [1969] model with i.i.d. returns

and constant relative risk aversion, and it can be solved explicitly.

1In the UK, mandatory retirement is still widespread, and this is still an active policy issue (see Meadows
[2003]). In the US, the Age Discrimination in Employment Act of 1967 (ADEA) generally prohibits manda-
tory retirement. One exception is for a qualifying “bona fide executive” or person in a “high policymaking
position” who can face mandatory retirement at an age of 65 or above. There used to be an exception for
tenured academics who could face mandatory retirement at an age of 70 or above, but that exception expired
on January 1, 1994.

2A more realistic model of mandatory retirement is given by Panageas and Farhi [2003], who permit
retirement at or before mandatory retirement date. Our simpler assumption is better for our benchmarking
because we can solve the model exactly and it is easier to compare with the other models.
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The second model has voluntary retirement in a model in which the agent is free to borrow

against future labor income. The second model is solved explicitly in the dual (as a function of

the dual variable which is the marginal utility of wealth in the value function). This is an explicit

parametric solution of the original problem up to a constant. Before retirement, there is a critical

wealth-to-wage ratio at which it is optimal to retire. The agent self-insures against risk in the security

market by working more when the security market returns are poor. By working longer in expensive

states, the agent generates more income (some of which is transferred to other states) for the average

time worked than if the agent worked for the same amount of time in each state. Because of the

self-insurance role of voluntary retirement, the agent invests a greater fraction of the total wealth

(i.e., financial wealth plus human capital) in the stock market compared to the benchmark case.

The third model has voluntary retirement in a model in which the agent cannot borrow against

future labor income. This restriction reduces the usefulness of investing in stocks because any

significant negative return would wipe out the financial wealth and bring the agent against the bor-

rowing constraint. Accordingly, the agent invests a smaller fraction of the total wealth in the stock

market compared to the second model. In addition, the borrowing constraint prevents the agent from

transferring income across states to the extent that would be optimal and reduces the attractiveness

of working longer in expensive states of nature. As a result, the critical wealth-to-wage ratio at

which it is optimal to retire is lower in the third model than that in the second model.

The paper contains technical innovations that permit solution up to determination of a few pa-

rameters. In particular, we combine the dual approach of Pliska (1986), He and Pagès (1993), and

Karatzas and Wang (2000) with an analysis of the boundary to obtain a problem we can solve in

parametric form even if no known solution exists in the primal problem.

Consumption and portfolio choice can both jump at the endogenous retirement date. Consump-

tion can jump because preferences are different after retirement. This could be due to household

production (time to cook instead of buying more expensive prepared food), reduced work-related ex-

penses (for clothes or commuting), or just different preference for consumption when more leisure

is available. Portfolio choice jumps at retirement because of the self-insurance benefit of human

capital just before retirement. When just below the critical wealth-to-wage ratio for retirement,

the agent knows that an increase in wealth implies human capital goes to zero (or a small post-

retirement level) but a decrease in wealth implies human capital may be much greater because of a
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possibly long excursion through the no-retirement region. Hence, human capital before retirement

has substantial negative correlation with the market return. Therefore, the portfolio holding in the

market is lower just after retirement than just before retirement because of the disappearance of the

human capital hedge at retirement.

Portfolio choice and consumption depend significantly on whether the agent is free to choose

when to retire and on whether it is possible to borrow against labor income. When the agent has free

choice of when to retire, the agent chooses to work longer in expensive states in which investment

returns are low, self-insuring an aggressive investment position. This optimal choice of retirement

date makes the present value of labor income become negatively correlated the financial market even

when the wage rate is uncorrelated with the market. The effectiveness of this strategy is reduced

by a nonnegative wealth constraint (which prevents borrowing against future income), since the

constraint prevents significant transfer of wealth from labor in expensive market states to cheaper

states (since the transfer would require borrowing in the expensive states). The effectiveness of this

strategy is also reduced for agents whose working wage is positively related to market returns, since

working longer in expensive states will also be at a lower wage.

In general, human capital is a less and less important fraction of total wealth over time, and the

fraction of financial wealth in risky assets will vary to counteract the risk exposure in human capital.

If the wage is uncorrelated with the market, human capital is underexposed to market, and the risky

asset position will be larger when young than when old. On the other hand, if the wage correlates

positively enough with the market, then the market exposure in human capital becomes positive and

is greater for the young than for the old, even with voluntary retirement. Consequently, the optimal

risky asset position will be smaller when young than when old. In fact, if the market exposure in the

human capital is more than what is optimal, the optimal risky asset position can become negative

for the young, even when the risk premium is positive. This implication of our model contradicts

brokers’ traditional advice that young investors should be aggressive and older investors should be

conservative.

Lachance [2004] also considers the optimal consumption and investment problem with endoge-

nous retirement. However, in contrast to this paper, she does not consider any borrowing constraint

against future labor income or any alternative hedging venue such as life insurance. As we show

in this paper, ignoring borrowing constraint would overstate the hedging benefit of human capital
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and the optimal stock investment before retirement. Jun Liu and Neis [2002] consider the optimal

consumption and investment problem with endogenous working hours. Similar to Lachance [2004],

they do not consider any borrowing constraint against future labor income. In addition, they as-

sume that the stock price can never fall below a fixed positive level. Bodie, Merton, and Samuelson

[1992] examine the effect of labor choice on optimal investment policy and Basak [1999] develops

a continuous-time general equilibrium model to adapt dynamic asset pricing theory to include labor

income. Dowell and McLaren [1986] construct a deterministic labor choice model without invest-

ment, allowing borrowing fully against future labor income. Similar to Jun Liu and Neis [2002],

these papers assume that working hours are infinitely divisible. Sundaresan and Zapatero [1997]

investigate how pension plans affect the retirement policies with an emphasis on the valuation of

pension obligations. They abstract from modeling the disutility of working and the investor’s invest-

ment opportunities outside the pension. Khitatrakun [2002] shows that individuals not constrained

by institutional constraints respond to a positive wealth shock by retiring or expecting to retire early

than previously expected. Gustman and Steinmeier [2001] find that there is a positive correlation

between wealth and retirement. Stock and Wise [1990] examine the effects of firm pension plan

provisions on the retirement decisions and the option value of work. Mitchell and Fields [1984] find

that retirement age differences are due in part to differences in worker preferences and in part to

differences in income opportunities conditional on pension rules.

The rest of the paper is organized as follows. Section II. presents the formal choice problems

used in most of the paper. Section III. presents graphically the solution presented in Section IV. as

well as a numerical solution of the case with locally unspanned labor income described in Section V..

Section VI. closes the paper. All of the proofs are in the appendix.

II. Choice Problems

Our general goal is to provide a tractable workhorse model that can be used to analyze various issues

related to life cycle consumption and investment, retirement, and insurance. This paper focuses on

stationary models that can be solved more or less explicitly. A companion piece looks at models with

life stages having potentially different hazard rates of mortality, disutilities of working, incidence of

sickness, and pure rate of time discount. This section poses the formal decision problems for most
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of the stationary models considered in this paper.

The choice problems make many of the assumptions that are common in continuous-time finan-

cial models, for example the constant riskfree rate and lognormal stock returns. Other assumptions

are not standard but seem particularly appropriate for analysis of life-cycle consumption and invest-

ment. For example, our model includes mortality and bequest as well as preference for not working.

In addition, before retirement an agent earns labor income with potentially stochastic wage and can

also purchase life insurance or term annuity.

All the models in this paper consider pure retirement without flexible hours, return to full-time

work in retirement, or part-time work in retirement. There is no reason why these other features

cannot be added to the model, but we choose to focus instead on the essential nonconvexity that

says half-time work is much less valuable than full-time work in some positions, as also pointed out

by Gustman and Steinmeier (1986).

In our main analysis we consider the following three cases:

benchmark fixed retirement date and free borrowing against wages (Problem 1 and Theorem 1).

NBC (“No Borrowing Constraint”) free choice of retirement date and free borrowing against

wages (Problem 2 and Theorem 2).

BC (“Borrowing Constraint”) free choice of retirement date but no borrowing against wages

(Problem 3 and Theorem 3).

The benchmark case is a close relative of the Merton [1969] model with i.i.d. returns and constant

relative risk aversion. Moving to the NBC case isolates the impact of making retirement flexible.

Subsequently moving to the BC case isolates the impact of the borrowing constraint.

Here are the three choice problems corresponding to the above three cases, with notation expla-

nation given later.

Problem 1 (benchmark) Given initial wealth W0, initial income from working y0, and time-to-

retirement T with associated retirement indicator function Rt = ι(T ≤ t) for some fixed time-to-

retirement T , choose adapted nonnegative consumption {ct}, adapted portfolio {θt}, and adapted

nonnegative bequest {Bt}, to maximize expected utility of lifetime consumption and bequest

E

[∫ ∞

t=0
e−(ρ+δ)t

(
(1−Rt)

c1−γ
t

1− γ
+ Rt

(Kct)1−γ

1− γ
+ δ

(kBt)1−γ

1− γ

)
dt

]
(1)
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subject to the budget constraint

Wt = W0 +
∫ t

s=0
(rWsds + θ>s ((µ− r1)ds + σ>dZs) + δ(Ws −Bs)ds− csds (2)

+ (1−Rs)ysds),

the labor income process

yt ≡ y0 exp

(
(µy − σy

>σy

2
)t + σy

>Zt

)
, (3)

and no-borrowing-without-repayment

Wt ≥ −g(t)yt, (4)

where

g(t) ≡




(
1−e−β1(T−t)

β1

)+
β1 6= 0

(T − t)+ β1 = 0,
(5)

β1 ≡ r + δ − µy + σy
>κ (6)

is the effective discount rate for labor income, and

κ ≡ (σ>)−1(µ− r1) (7)

is the price of risk.

Problem 2 (NBC) Given initial wealth W0, initial income from working y0, and initial retire-

ment status R0−, choose adapted nonnegative consumption {ct}, adapted portfolio {θt}, adapted

nonnegative bequest {Bt}, and adapted nondecreasing retirement indicator3 {Rt}, to maximize

expected utility of lifetime consumption and bequest (1) subject to the budget constraint (2), labor

income before retirement (3), and no-borrowing-without-repayment

Wt ≥ −(1−Rt)
yt

β1
, (8)

3By “indicator,” we mean a right-continuous process taking values 0 and 1. By nondecreasing we mean
that for 0 < s < t, R0− ≤ R0 ≤ Rs ≤ Rt.
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where β1 is assumed to be positive.

Problem 3 (BC) The same as Problem 2, except that the no-borrowing-without-repayment con-

straint is replaced by the stronger non-negative wealth constraint

Wt ≥ 0. (9)

The common objective function (1) for the problems has already integrated out the impact of

mortality risk: utility is discounted at the rate ρ + δ where ρ is the pure rate of time discount and

δ is the hazard rate of mortality. The uncertainty in the model comes from two sources: the stan-

dard Wiener process Zt and the Poisson arrival of mortality at a fixed hazard rate δ. These are

drawn independently. We allow the investor to trade in one risk free asset and multiple risky assets

(“stocks”). The Wiener process Zt has dimensionality equal to the number of linearly independent

risky returns, and maps into security returns through the constant mean vector µ and the constant

nonsingular standard deviation matrix σ giving the sensitivities of the various securities to the un-

derlying uncertainty Z. For most of the paper, we will assume that local changes in the labor income

y are spanned by local returns on the assets, but we will generalize this result (requiring a numerical

solution) in Section V and provide some plots in Section III. Some early work on utility theory

suggested that the pure rate of time discount is positive only because of the effect of mortality; if

this is true then we could take ρ to be 0. Still, the problem would not be the same as the traditional

problem due to the presence of bequest and insurance. Insurance is assumed to be fairly priced at

the rate δ per unit of coverage, both long and short. When W − B < 0, this is term life coverage

purchased for a premium of δ(B−W ) per unit time and a receipt of B−W at death. If W−B > 0,

then this is a short position in term life coverage, which is like a term version of a life annuity since

it trades wealth in the event of death for more consumption when living.

Retirement status affects both preferences and income. The retirement status at time t is given

by the retirement indicator Rt, which is 1 after retirement and 0 before retirement. Retirement

is exogenously fixed at time T in Problem 1 and endogenously chosen in Problems 2 and 3. In

all cases, retirement is right-continuous (technically convenient) and nondecreasing (retirement is

irreversible). The state variable R0− is the retirement status at the beginning of the investment

horizon. This may be different from R0 since if not retired at the outset (R0− = 0), it may still
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be optimal to retire immediately (R0 = 1). We take retirement to be irreversible: for 0 < s < t,

R0− ≤ R0 ≤ Rs ≤ Rt. Irreversible retirement is not the only modeling choice. For example,

completely flexible hours have been considered by Jun Liu and Neis [2002]. In their model, the

agent can move freely in and out of retirement, and can vary hours continuously when working. We

focus instead on the non-convexity of working: there are lot of jobs in which working half-time is

worth a lot less to the company than working full-time. We consider an extreme case in which the

worker either works full-time or does not work at all. It is not hard to solve intermediate cases, for

example, we have solved an example in which the worker can only work full-time before retirement

(say as a sales manager) but is free to work flexible hours at a lower wage (say as receptionist

in a community center) after retirement. We could also model a case in which skills depreciate

slowly after retirement; perhaps it is impossible to return to the profession after five years but it is

possible to return at a small decrease in wage after three months. We leave all these possibilities for

elsewhere; this paper concerns only the pure case in which retirement is completely irreversible.

The utility function (1) is a standard time-separable von Neumann-Morgenstern utility function

with mortality and bequest. The utility function features the same constant level γ > 0 of risk aver-

sion for consumption before retirement, after retirement, and for bequests. Felicity of consumption

or bequest is discounted using a pure rate of time discount ρ plus the mortality rate δ. The constant

K > 1 indicates how much more consumption before retirement must be increased to compensate

for having to work. Preference for not working could be due to a disutility of work, or it could be

due indirectly to household production and cost savings. For example, when working there may not

be enough time to shop for bargains or prepare meals or take a cruise. The constant k > 0 measures

the intensity of preference for leaving a large bequest, the limit k1−γ → 0 implements no preference

for bequest.

The terms in the integrand of the wealth equation (2) are mostly familiar. The first term says

that if all wealth is invested in the riskfree asset, the rate of return is r. For the dollar investment

θt in the risky asset, there is risk exposure θt
>σ>dZt and the mean return θt

>µdt is substituted

for the corresponding riskfree return rθt
>1dt (where 1 is a vector of 1’s with dimension equal to

the number of risky assets). The term δ(Bt − Wt)dt is the insurance premium we have already

discussed, ctdt is payment for consumption, and (1−Rt)ytdt is labor income. The factor (1−Rt)

multiplying wage income says income disappears after retirement.

8



In general, it is a subtle question what kind of constraint to include in an infinite-horizon portfo-

lio problem to rule out borrowing without repayment and doubling strategies. Fortunately, there is a

simple and reasonable constraint that suffices in our problem. The no-borrowing-without-repayment

constraints (4) or (8) specify that the level of indebtedness (= max(−Wt, 0)) can never be larger

than earnings potential. The two constraints differ because the earnings potential is different when

there is a fixed retirement date than when retirement is a choice and it is possible to work until

death. In Problem 3, the no-borrowing-without-repayment constraint is replaced by the stronger

no-borrowing constraint (9).

To review the differences in the problems, moving from the benchmark Problem 1 to the NBC

Problem 2, the fixed retirement date T (Rt = ι(t ≥ T )) is replaced by free choice of when to retire

(Rt a choice variable), along with a technical change in the calculation of the maximum value of

future labor income ((4) to (8)). Moving from the NBC Problem 2 to the BC Problem 3 replaces the

no-borrowing-without-repayment constraint (8) with a no-borrowing constraint (9).

III. Graphical Solution

It is useful to anticipate the economic content of paper by graphing the analytical solutions given

in Theorems 1, 2, and 3 in Section IV. below. We present many of the results normalized by total

wealth, equal to financial wealth plus human capital, where human capital is the market value of

future labor income in the optimal solution. The formulas for human capital are given in Propo-

sition 2 at the end of Section IV. below. While the market’s valuation of the individual’s human

capital may be different from the individual’s own valuation (due to the borrowing constraint), this

is still a useful normalization for interpreting the results. In all the figures, we assume that there is

only one stock (the market portfolio) for simplicity. In addition, we assume constant wage rate for

the first six figures.

Recall that the results consider three cases:

benchmark fixed retirement date and free borrowing against wages (Problem 1 and Theorem 1)

NBC (“No Borrowing Constraint”) free choice of retirement date and free borrowing against

wages (Problem 2 and Theorem 2)
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BC (“Borrowing Constraint”) free choice of retirement date but no borrowing against wages

(Problem 3 and Theorem 3)

Figure 1 shows the optimal stock position in the three cases, per unit of total wealth, as a function

of financial wealth. The horizontal line shows the optimal portfolio choice for the benchmark case.

In this case, it is as if all future wage income is capitalized and then there is fixed-proportions

investment as in the Merton model. The portfolio proportion is the same constant whatever the time

to retirement T is (and even after retirement). Moving to the NBC case, permitting flexibility in the

retirement date permits a larger equity position because working longer can insure against variation

in the stock market. The agent works longer in expensive states (when the market is down) and

the wealth from these states is transferred to other states by taking a significant position in equities.

With the borrowing constraint in the BC case, transfer of wealth across states is restricted and indeed

there is not much point of taking a significant position in equities when financial wealth is low, since

that would just imply bumping into the borrowing constraint much of the time.

Figure 2 shows the consumption rate, normalized by total wealth, as a function of financial

wealth. An interesting point not visible in the picture is that consumption jumps at retirement

(see Table 1), in a direction that depends on whether risk aversion is larger or smaller than 1 (log

utility). In the benchmark case, the consumption rate does not depend on financial wealth, but it

does depend on time to maturity (not shown). Moving to the NBC case, adding flexible retirement

leads to a higher consumption rate when wealth is higher (due to risk aversion greater than 1 in the

example), since high wealth implies retirement is expected soon and demand for consumption is

less after retirement. Moving to the BC case, consumption is significantly less at low wealth levels,

which represents precautionary savings against market declines.

The retirement threshold for the wage-normalized wealth level (i.e., wealth-to-wage ratio) at

which the agent chooses to retire as a function of relative risk aversion is plotted in Figure 3. There

is no curve for the benchmark case, since in that case retirement is at a fixed date, not at a freely

chosen wealth boundary. The retirement threshold is lower when there is a borrowing constraint

than when there is none: while retirement is equally desirable in both cases, continuing to work

is less desirable when borrowing is limited. The retirement threshold initially decreases and then

increases in risk aversion. When risk is small, an increase in the risk aversion decreases the hedging

benefit of working longer is smaller because the investor invests less in stock. However, when risk is

10



large, since the potential income from stock investment becomes less significant, the investor needs

to work more to support after retirement living standard.

The value of human capital can vary inversely with wealth as a form of insurance. Figure 4

shows the dependence of human capital on financial wealth. This is a constant over wealth in the

benchmark case, but would vary from zero to the maximum on the NBC curve as maturity increases.

In the BC and NBC cases, we see the insurance effect of how the agent hedges financial risk by

working longer (and thereby increasing the value of human capital) when financial wealth is low.

Having flexible retirement and borrowing (the NBC case) is the least constrained of the three

cases. It is interesting to measure the loss in value in the other two cases. Figure 5 gives the value

loss from losing retirement flexibility, as a function of the fixed time to retirement. The value loss is

measured as a certainty-equivalent fraction of total wealth corresponding to moving from the NBC

case to the benchmark case. When wealth is high (=20), retiring soon is optimal and the loss is

least when forced retirement comes soon. As wealth decreases, it becomes optimal to work longer

and longer and the minimum loss is at larger and larger fixed times to retirement. Figure 6 shows

the value of being able to borrow measured in the certainty-equivalent fraction of total wealth as a

function of the financial wealth. The value is small when financial wealth is large and is large when

the borrowing constraint is nearly binding. The value of being able to borrow is greater when the

mean return on the stock is higher, since being able to borrow makes it possible to make full use of

equity.

”Asset pricing with idiosyncratic risk and overlapping generations”

Stock brokers have traditionally advised customers that young people should take on more risk

than older people who are close to retirement. Our analysis can be used to generalize and confirm

analysis of Jagannathan and Kocherlakota (1996) that calls into question this traditional rule.4 We

have already seen in Figure 1 that in both the NBC case and BC case, the risky asset holding

increases as a function of wealth, and higher wealth corresponds to being nearer to retirement.

Arguably this result is not a fair criticism of the traditional advice because of the normalization by

total wealth. Figure 7 shows the portfolio choice normalized by financial wealth (for the NBC case),

which may be closer to the intent of the traditional advice. When wages are less risky (top curves),

4Similarly, Storesletten, Telmer and Yaron (2001) finds that idiosyncratic risks in labor income can drive
stock investment downward for the young.
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the proportion of financial wealth put in stock does indeed fall as financial wealth increases, but

this result is reversed in the case of an agent whose salary has a large positive sensitivity to market

risk (bottom curves). The dotted curves in Figure 7 show a case (described in Section V. in which

there is idiosyncratic volatility in income so that the labor income is not locally spanned by market

returns. Not having spanning tends to moderate hedging demand for the risky asset in the portfolio.

Part of the problem with the traditional advice can be understood by the benchmark case in

which risky asset position is chosen to be a fixed proportion of total wealth. When young, most

of the agent’s total wealth is in human capital, and if the wage is positively correlated with market

this may already represent too much exposure to market risk, implying a desire for to take a short

position in stocks to hedge the excess risk. When retirement is discretionary, the stock choice is

less for the direct reason we have been discussing that wages are riskier, and also because it is less

attractive to work more in expensive states (since those are also states of low wage when wages

move in the same direction as stocks). Together with the result that a borrowing constraint reduces

stock demand at low levels even more, these results question the usefulness of the traditional advice,

at least in the absence of a lot of qualifications of when the advice should be applied.

Table 1 contains a number of solutions illustrating the sensitivity of the equilibrium to various

parameters. In particular, it shows the significant drop of the consumption and the stock investment

at retirement date. Admittedly, if the correlation between labor income and the financial market

is highly positive, then the drop in the stock investment at retirement can be potentially reversed.

However, empirical evidence suggests that the correlation between labor income and the financial

market is typically low (especially when close to retirement age),5 so our model predicts that typi-

cally the stock investment drops at retirement because of the loss of the hedging from labor income.

In addition, as the mortality rate decreases, the investor requires a higher retirement threshold (i.e.,

higher wealth-to-wage ratio) to retire and consumes less to save for after-retirement.

5For example, Heaton and Lucas (1997) find that in their sample the correlation median is 0.02.
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Figure 1: Equity per total wealth given financial wealth
Total wealth equals financial wealth W plus human capital H . The horizontal line is for
the benchmark case with a fixed retirement date 20 years from now and free borrowing
against future wages. The NBC (“No Borrowing Constraint”) case adds free choice of
retirement date but still allows free borrowing. The BC (“Borrowing Constraint”) case
adds a nonnegative wealth constraint that restricts borrowing against future wages. The
plot is based on parameters µ = 0.05, σ = 0.22, r = 0.01, δ = 0.025, ρ = 0.01, γ = 3,
K = 3, k = 0.05, µy = 0, σy = 0, and y0 = 1.
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Figure 2: Consumption per total wealth given financial wealth
Parameters: µ = 0.05, σ = 0.22, r = 0.01, δ = 0.025, ρ = 0.01, γ = 3, K = 3, k = 0.05,
µy = 0, σy = 0, and y0 = 1.
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Figure 3: Retirement threshold given risk aversion
The agent retires the first time wage-normalized financial wealth reaches the retirement
threshold. Parameters: µ = 0.05, σ = 0.22, r = 0.01, δ = 0.025, ρ = 0.01, K = 3,
k = 0.05, µy = 0, σy = 0, and y0 = 1.
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Figure 4: Human capital given financial wealth
The smaller the financial wealth, the longer it is expected to work and the higher the human
capital. For this reason, human capital has a negative beta. Parameters: µ = 0.05, σ = 0.22,
r = 0.01, δ = 0.025, ρ = 0.01, γ = 3, K = 3, k = 0.05, µy = 0, σy = 0, and y0 = 1.
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Figure 5: Value of voluntary retirement given horizon
The value is measured as the fraction by which wealth would have to be increased to com-
pensate for a change from free choice of retirement to retirement at the fixed date T . Pa-
rameters: µ = 0.05, σ = 0.22, r = 0.01, δ = 0.025, ρ = 0.01, γ = 3, K = 3, k = 0.05,
µy = 0, σy = 0, and y0 = 1.
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Figure 6: Value of borrowing given financial wealth
The value is measured as the fraction by which wealth would have to be increased to com-
pensate for not having access to borrowing. Parameters: σ = 0.22, r = 0.01, δ = 0.025,
ρ = 0.01, γ = 3, K = 3, k = 0.05, µy = 0, σy = 0, and y0 = 1.
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Figure 7: Equity holdings and risky labor income
When labor income moves with the market, risky asset demand is reduced for the direct
reason that human capital is part of the agent’s portfolio and for an indirect reason that
the agent is less inclined to work longer when the market is low. Uncorrelated risk has a
small impact on the equity holdings. Parameters: µ = 0.05, σ = 0.22, µy = 0, r = 0.01,
δ = 0.025, ρ = 0.01, γ = 3, K = 3, k = 0.05, and y0 = 1.
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Figure 8: Retirement threshold and risky labor income
The retirement threshold is relatively insensitive to market risk (different curves) and idio-
syncratic risk (horizontal axis) in labor income. Parameters: µ = 0.05, σ = 0.22, µy = 0,
r = 0.01, δ = 0.025, ρ = 0.01, γ = 3, K = 3, k = 0.05, and y0 = 1.
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Parameter W̄ c(τ)
W̄

c(τ+)
W̄

θ(τ)
W̄

θ(τ+)
W̄

W̄NBC
θNBC(τ+

NBC)

W̄NBC

Base Case 28.81 0.058 0.028 0.8 0.28 29.16 0.83

γ = 3.5 28.98 0.057 0.026 0.69 0.24 29.19 0.71

γ = 3.5 28.91 0.058 0.03 0.95 0.33 29.52 0.98

µ = 0.04 28.03 0.056 0.027 0.72 0.21 28.14 0.73

µ = 0.06 29.26 0.061 0.029 0.89 0.34 30.06 0.92

σ = 0.15 29.38 0.065 0.031 1.40 0.59 30.76 1.48

σ = 0.30 27.97 0.060 0.03 0.53 0.15 28.07 0.53

δ = 0.02 28.81 0.058 0.028 0.80 0.28 29.16 0.83

δ = 0.03 20.96 0.075 0.036 0.81 0.28 21.01 0.82

ρ = 0.008 29.08 0.057 0.027 0.78 0.28 29.39 0.80

ρ = 0.012 28.54 0.059 0.028 0.83 0.28 28.94 0.85

K = 2.5 35.93 0.053 0.029 0.71 0.28 36.22 0.72

K = 3.5 24.45 0.063 0.027 0.89 0.28 24.85 0.92

k = 0.025 33.59 0.050 0.024 0.74 0.28 33.91 0.75

k = 0.075 26.87 0.062 0.030 0.84 0.28 17.86 0.76

µy = 0.01 34.82 0.058 0.028 1.10 0.28 38.02 1.23

µy = −0.01 25.56 0.058 0.028 0.58 0.28 25.57 0.58

Table 1: Comparative Statics

Base case parameters: µ = 0.05, σ = 0.22, r = 0.01, δ = 0.025, ρ = 0.01, γ = 3, K = 3, k = 0.05,

µy = 0, σy = 0, and y0 = 1.

IV. The Analytical Solution

Let

ν ≡ γ

ρ + δ − (1− γ)(r + δ + κ>κ
2γ

)
. (10)
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For our solutions, we will assume ν > 0, which is the condition for the corresponding

Merton problem with positive initial wealth up front to have a solution.6 If relative risk

aversion γ > 1, ν is always positive, but for 1 > γ > 0, whether ν is positive depends on

the other parameters.

Theorem 1 (benchmark) Suppose ν > 0 and that the no-borrowing constraint is satisfied

with strict inequality at the initial values:

W0 > −g(0)y0. (11)

Then in the solution to the investor’s Problem 1, the optimal wealth process is

W ∗
t = f(t)ytx

−1/γ
t − g(t)yt, (12)

the optimal consumption policy is

c∗t = K−bRtf(t)−1(W ∗
t + g(t)yt), (13)

the optimal trading strategy is

θ∗t =
(σ>σ)−1(µ− r1)

γ
(W ∗

t + g(t)yt)− σ−1σyg(t)yt, (14)

and the optimal bequest policy is

B∗
t = k−bf(t)−1(W ∗

t + g(t)yt), (15)

where

b ≡ 1− 1/γ, (16)

f(t) ≡ (η̂ − η) exp(−1 + δk−b

η
(T − t)+) + η, (17)

6If ν < 0, then the investor can achieve infinite utility by delaying consumption.
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η ≡ (1 + δk−b)ν, (18)

η̂ ≡ (K−b + δk−b)ν. (19)

xt ≡
(

W0 + g(0)y0

y0f(0)

)−γ

e(µx− 1
2
σ>x σx)t+σ>x Zt , (20)

µx ≡ −(r − ρ)− 1

2
γ(1− γ)σ>y σy + γµy − γσy

>κ, (21)

and

σx ≡ γσy − κ. (22)

Furthermore, the value function for the problem is

V (W, y, t) = f(t)γ (W + g(t)y)1−γ

1− γ
.

PROOF. The approach of the proof is to use a separating hyperplane to separate pre-

ferred consumptions from the feasible consumptions. Feasibility of the claimed optimum

follows from direct substitution. Given (11), W ∗ is well-defined by (12). It is tedious but

straightforward to verify the budget equation (2) using Itô’s lemma and the claimed form of

the strategy (c∗, θ∗, B∗, W ∗) in (12)–(15), various definitions (5)–(7) and (12)–(22), and the

definition of labor income (3). Note that W ∗
0 = W0 by (12) and (20). The no-borrowing-

without-repayment constraint (4) follows from positivity of f(t) and x, and the definition

of W ∗ in (12).

We start by noting the state-price density and pricing results, both for labor income and

for consumption and bequest. Define the state price density process ξ by

ξt ≡ e−(r+δ+ 1
2
κ>κ)t−κ>Zt . (23)

This is the usual state-price density but adjusted to condition on living, given the mortality

rate δ and fair pricing of long and short positions in term life insurance.
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As shown in Lemma 1 in the Appendix, g(t)yt is the value at t of subsequent labor

income, where g is defined in (5). (Note that g(t) ≡ 0 for t ≥ T .) Furthermore, by Lemma

1, we have that the present value of future consumption and bequest is no larger than initial

wealth:

E[
∫ ∞

0
ξt(ct + δBt)dt] ≤ W0 + g(0)y0, (24)

for any feasible strategy, with equality for our claimed optimum.

We then have, for any feasible strategy (c, θ, B),

E[
∫ ∞

0
e−(ρ+δ)t

(
(KRtct)

1−γ

1− γ
+ δ

(kBt)
1−γ

1− γ

)
dt]

≤ E[
∫ ∞

0
e−(ρ+δ)t

(
(KRtc∗t )

1−γ

1− γ
+ δ

(kB∗
t )

1−γ

1− γ

)
dt]

+
x0

yγ
0

E[
∫ ∞

0
ξt(ct + δBt − c∗t − δB∗

t )dt]

≤ E[
∫ ∞

0
e−(ρ+δ)t

(
(KRtc∗t )

1−γ

1− γ
+ δ

(kB∗
t )

1−γ

1− γ

)
dt], (25)

where the first inequality follows from Lemma 2 and the second inequality follows from

pricing (24) for all strategies and equality for the claimed optimum. This says that the

claimed optimum dominates all other feasible strategies. We showed previously that the

claimed optimum is feasible, so it must indeed be optimal.♣
Unlike Problem 1, Problems 2 and 3 do not seem to have explicit solutions in terms of

the primal variables. However, we provide explicit solutions (up to at most one constant)

in terms of marginal utility in Theorems 2 and 3. Recall the definition of ν in (10) and β1

in (6), and define

β2 ≡ ρ + δ +
1

2
γ(1− γ)σ>y σy − (1− γ)µy (26)

and

β3 ≡ (γσy − κ)>(γσy − κ). (27)

Then, here is the solution for the NBC (no borrowing constraint) case.
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Theorem 2 (NBC) Suppose ν > 0, β1 > 0, β2 > 0, and that the borrowing constraint

holds with strict inequality at the initial condition:

W0 > −(1−R0−)
y0

β1

. (28)

The solution to the investor’s Problem 2 can be written in terms of the dual variable xt (a

normalized marginal utility of consumption). Specifically, let the dual variable be defined

by

xt ≡ x0e
(µx− 1

2
σ>x σx)t+σ>x Zt (29)

(warning: the same interpretation but not the same process as in Theorem 1), where x0

solves

−y0ϕx(x0, R0) = W0, (30)

where

ϕ(x,R) =




−η̂ xb

b
if R = 1 or x ≤ x

A+xα− − η xb

b
+ 1

β1
x otherwise,

(31)

where b, η, and η̂ were defined in Theorem 1 (in equations (16), (18), and (19)), and

A+ ≡ 1

γ(b− α−)β1

x1−α− , (32)

the optimal retirement boundary is

x =

(
(η − η̂)(b− α−)β1

b(1− α−)

)γ

, (33)

where

α− ≡
β1 − β2 + 1

2
β3 −

√
(β1 − β2 + 1

2
β3)2 + 2β2β3

β3

. (34)

Then the optimal consumption policy is

c∗t = K−bR∗t ytx
−1/γ
t , (35)
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the optimal trading strategy is

θ∗t = yt[(σ
>σ)−1(µ− r1)xtϕxx(xt, R

∗
t )− σ−1σy(γxtϕxx(xt, R

∗
t ) + ϕx(xt, R

∗
t ))], (36)

the optimal bequest policy is

B∗
t = k−bytx

−1/γ
t , (37)

the optimal retirement policy is

R∗
t = ι{t ≥ τ ∗}, (38)

the corresponding retirement wealth threshold is

W t = −ytϕx(x, 0), (39)

and the optimal wealth is

W ∗
t = −ytϕx(xt, R

∗
t ), (40)

where

τ ∗ = (1−R0) inf{t ≥ 0 : xt ≤ x}. (41)

Furthermore, the value function is

V (W, y, R) = y1−γ (ϕ(x,R)− xϕx(x,R)) , (42)

where x solves

−yϕx(x,R) = W. (43)

PROOF. See the proof after Theorem 3.

Theorem 3 (BC)

Suppose ν > 0, β1 > 0, β2 > 0 and that initial wealth is strictly positive:

W0 > 0. (44)
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The solution to the investor’s Problem 3 is similar to the solution to Problem 2, and can be

written in terms of the new dual variable xt defined by

xt =
x0e

(µx− 1
2
σ>x σx)t−σ>x Zt

max(1, sup0≤s≤min(t,τ∗) x0e
(µx− 1

2
σ>x σx)s−σ>x Zs/x)

(45)

where x0 solves

−y0ϕx(x0, R0) = W0, (46)

and µx and µy are the same as in Theorems 1 and 2 (as given by (21) and (22)). The new

dual value function is

ϕ(x,R) =




−η̂ xb

b
if R = 1 or x ≤ x

A+xα− + A−xα+ − η xb

b
+ 1

β1
x otherwise,

(47)

where

A− =
η(b− α−)

α+(α+ − α−)
xb−α+ − 1− α−

α+(α+ − α−)β1

x1−α+ , (48)

A+ =
η(α+ − b)

α−(α+ − α−)
xb−α− − α+ − 1

α−(α+ − α−)β1

x1−α− , (49)

the x value at which the financial wealth is zero is

x =




(
η−η̂

b
ζb−α− − η

α−

)
(α+ − b)β1

(ζ1−α− − 1
α−

)(α+ − 1)




γ

, (50)

the optimal retirement boundary

x = ζx, (51)

where ζ ∈ (0, 1) is the unique solution to q(ζ) = 0, where

q(ζ) ≡
(

1−K−b

b(1 + δk−b)
ζb−α− − 1

α−

) (
ζ1−α+ − 1

α+

)
(α+ − b)(α− − 1)

−
(

1−K−b

b(1 + δk−b)
ζb−α+ − 1

α+

) (
ζ1−α− − 1

α−

)
(α− − b)(α+ − 1), (52)
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and

α+ =
β1 − β2 + 1

2
β3 +

√
(β1 − β2 + 1

2
β3)2 + 2β2β3

β3

. (53)

Then given the new dual variable xt and the new dual value function, the rest of the form

of the solution are given by (35) through (43).

PROOF OF THEOREMS 2 AND 3: If R0 = 1, then Problems 2 and 3 are identical to

Problem 1. Therefore, the optimality of the claimed optimal strategy follows from Theorem

1. From now on, we assume w.l.o.g. that R0 = 0. It is tedious but straightforward to use

the generalized Itô’s lemma, equations (31)-(40), and (47)-(53) to verify that the claimed

optimal strategy W ∗
t , c∗t , θ∗t , and R∗

t in these two theorems satisfy the budget constraint (2).

In addition, by Lemmas 4 and 5, x0 exists and is unique and W ∗
t satisfies the borrowing

constraint in each problem. Furthermore by Lemma 7, there is a unique solution to (52).

By Doob’s optional sampling theorem, we can restrict attention w.l.o.g. to the set of

feasible policies that implement the optimal policy stated in Theorem 1 after retirement,

and the utility function for such a strategy can be written as

E
∫ ∞

0
e−(ρ+δ)s

[
(1−Rs)

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
ds + V (Ws, ys, 1)dRs

]
. (54)

Accordingly, define

Mt =
∫ t

0
e−(ρ+δ)s

[
(1−Rs)

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
ds + V (Ws, ys, 1)dRs

]

+(1−Rt)e
−(ρ+δ)tV (Wt, yt, 0). (55)

By Lemma 6 in the Appendix, Mt is a supermartingale for any feasible policy (c, B, R, W )

and a martingale for the claimed optimal policy (c∗, B∗, R∗,W ∗), which implies that M0 ≥
E[Mt], i.e.,

V (W0, y0, 0) ≥ E
∫ t

0
e−(ρ+δ)s

[
(1−Rs)

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
ds + V (Ws, ys, 1)dRs

]

+E[(1−Rt)e
−(ρ+δ)tV (Wt, yt, 0)], (56)
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and with equality for the claimed optimal policy. In addition, by Lemma 6, we also have

that

lim
t→∞E[(1−Rt)e

−(ρ+δ)tV (Wt, yt, 0)] ≥ 0,

with equality for the claimed optimal policy.

Therefore, taking the limit as t ↑ ∞ in (56), we have

V (W0, y0, 0) ≥ E
∫ ∞

0
e−(ρ+δ)s

[
(1−Rs)

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
ds + V (Ws, ys, 1)dRs

]
,

with equality for the claimed optimal policy (c∗, B∗, R∗). This completes the proof. ♣

Proposition 1 Suppose σy = 0 and µ > r. Then the fraction of total wealth W + H

invested in the stock in Problem 2 is greater than that in Problem 1.

We next provide results on computing the human capital at any point in time.

Proposition 2 Consider the optimal policies stated in Theorems 1-3. After retirement, the

market value of the human capital is zero. Before retirement, in Theorem 1 the market value

of the human capital is

H(yt, t) = g(t)yt,

where yt and g(t) are given in (3) and (5); in Theorem 2 the market value of the human

capital is

H(xt, yt) =
yt

β1

(−x1−α−x
α−−1
t + 1),

where yt, β1, xt, x, α−, and R∗
t are given in (3), (6), (20), (33), (34), and (38); and in

Theorem 3 the market value of the human capital is

H(xt, yt) =
yt

β1

(Ax
α−−1
t + Bx

α+−1
t + 1),

where yt, β1, α−, xt, α+, and R∗
t , are given in (3), (6), (34), (45), (53), and (38)), and

where

A =
(1− α+)x1−α−xα+−α−

(α+ − 1)xα+−α− − (α− − 1)xα+−α−
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and

B =
(α− − 1)x1−α−

(α+ − 1)xα+−α− − (α− − 1)xα+−α−
.

PROOF: See the appendix.

Proposition 3 As the investor’s financial wealth W increases, the investor’s human capital

H decreases in both Problem 2 and Problem 3.

Proposition 4 The retirement wealth threshold for Problem 2 is higher than that for Prob-

lem 3.

Finally, we can use the results in the following proposition to compute the expected

time to retirement.

Proposition 5 Suppose that the investor is not retired and 1
2
σ2

x−µx > 0. Then the expected

time to retirement for the optimal policy is

Et[τ
∗|xt = x] =

log(x/x)
1
2
σ2

x − µx

,∀xt > x

in Theorem 2 and

Et[τ
∗|xt = x] =

xm − xm

(1
2
σ2

x − µx)mxm
+

log(x/x)
1
2
σ2

x − µx

, ∀xt ∈ [x, x] (57)

in Theorem 3, where

m = 1− 2µx

σ2
x

.

PROOF: See the appendix.

V. Imperfectly Correlated Labor Income

Suppose labor income is not spanned. Specifically, assume

(∀t ≥ 0)
dyt

yt

= µydt + σydZt + σ̂ydẐt, (58)
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where Ẑt is a one-dimensional Brownian motion independent of Zt. The primal problem is

difficult to solve due to a singular boundary condition at Wt = 0. We therefore solve this

case also using the dual approach.

Let a convex and decreasing function ϕ(x,R) be such that the value function V (W, y,R) =

y1−γ(ϕ(x, R) − xϕx(x,R)), where x solves −yϕx(x,R) = W . Then after retirement

ϕ(x, 1) is the same as the one in Problems 1-3. After straightforward simplification, the

HJB equation for ϕ(x, 0) becomes

1

2
β3x

2ϕxx(x, 0)−(β1−β2)xϕx(x, 0)−β2ϕ(x, 0)− 1

2
σ̂2

y

ϕ2
x(x, 0)

ϕxx(x, 0)
−(1+δk−b)

xb

b
+x = 0,

(59)

where

β1 = r + δ − µy + σyκ
> + γσ̂2

y, (60)

β2 = ρ + δ +
1

2
γ(1− γ)(σ>y σy + σ̂2

y)− (1− γ)µy, (61)

and β3 is the same as in (27). Note that if the labor income is perfectly correlated with the

stock market, i.e., σ̂y = 0, then this ODE reduces to (82) for the previous section.

We need to solve ODE (59) subject to (83)-(86). Different from the case with perfectly

correlated labor income, the HJB ODE (59) is fully nonlinear and an explicit form for the

value function seems unavailable. However, this nonlinear ODE with free boundaries can

be easily solved numerically, as we did to produce Figures 7 and 8.

VI. Conclusion

We have constructed workhorse models of lifetime consumption and investment. We hope

these models will be useful for analyzing retirement, pensions, and insurance.
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Appendix

Here we collect required intermediate results and proofs. First, a lemma

Lemma 1 Suppose ν > 0, and define {Rs} as in Problem 1. Then

(i) For any t, g(t)yt = 1
ξt

Et[
∫∞
t ξs(1−Rs)ys ds]. (In Problem 1, g(t)yt is the market value

at t of the subsequent labor income.)

(ii) For any strategy (c, θ, B, W ) that is feasible for Problem 1,

E
[∫ ∞

0
ξs(cs + δBs)ds

]
≤ W0 + g(0)y0, (62)

with equality for the claimed optimal strategy (c∗, θ∗, B∗,W ∗) in Theorem 1. (This is the

static budget constraint. Inequality for a general policy may be due to investing wealth

forever without consuming and/or a suicidal strategy.)

PROOF OF LEMMA 1 (i) By Itô’s lemma, (3), (5), (6), (23), and simple algebra,

d (ξtg(t)yt) = −ξt(1−Rt)ytdt + ξtg(t)yt(σy − κ)>dZt.

Furthermore,

E
∫ t

0
(ξsg(s)ys)

2 (σy − κ)>(σy − κ)ds < ∞,

since ξsys is a standard lognormal diffusion and the other factors are bounded for any t and

zero for t > T . Therefore the local martingale

ξtg(t)yt +
∫ t

0
ξs(1−Rs)ys ds = g(0)y0 +

∫ t

s=0
ξsg(s)ys(σy − κ)>dZs (63)

is a martingale that is constant for t > T . Picking any T > max(t, T ), the definition of a

martingale implies that

ξtg(t)yt +
∫ t

0
ξs(1−Rs)ys ds = Et

[
ξT g(T )yT +

∫ T

0
ξs(1−Rs)ys ds

]
(64)
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Now, T > max(t, T ) implies that g(T ) = 0, and the integral on the left-hand-side is

known at t. Therefore, we can subtract the integral from both sides and divide both sides

by ξt to conclude

g(t)yt =
1

ξt

Et

[∫ T

t
ξs(1−Rs)ys ds

]

=
1

ξt

Et

[∫ ∞

t
ξs(1−Rs)ys ds

]
, (65)

where the second equality follows from the fact that Rs ≡ 1 for s > T .

(ii) The no-borrowing-without-repayment constraint (4), together with nonnegativity of

ct, Bt, and ξt, imply that

ξtWt +
∫ t

0
ξs(cs + δBs − (1−Rs)ys) ds ≥ −[ξtg(t)yt +

∫ t

0
ξs(1−Rs)ys ds]. (66)

For any strategy (c, θ, B, W ) that is feasible in Problem 1, Itô’s lemma, the budget con-

straint (2), the definition of g, (23), and (7) imply that the left-hand side of (66) has zero

drift and is therefore a local martingale. Furthermore, the right-hand side of (66) is a mar-

tingale, which was an intermediate result that (63) is a martingale in the proof of Part (i)

above. Since any local martingale bounded below by a martingale is a supermartingale,7

the left-hand-side of (66) is a supermartingale for any feasible strategy.

For the claimed optimal strategy, the left-hand side of (66) is a martingale, since it is a

local martingale and the integrand with respect to dZt is the sum of lognormal terms that

can be shown to be bounded in L2 over finite time intervals.

By definition of supermartingale and martingale, we have for any t > 0 that

W0 ≥ E
[
ξtWt +

∫ t

0
ξs(cs + δBs − (1−Rs)ys) ds

]
, (67)

7If a local martingale X is bounded below by a martingale Y , then X − Y is a local martingale that is
bounded below and is therefore a supermartingale. Therefore, X = (X − Y ) + Y is a supermartingale.
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with equality for the claimed optimum. Taking the limit as t ↑ ∞ and using the result from

(i), we have that

W0 ≥ lim inf
t↑∞

E[ξtWt] + E
[∫ ∞

0
ξs(cs + δBs) ds

]
− g(0)y0. (68)

Since g(t) = 0 for t > T , the no-borrowing-without-repayment constraint (4) implies that

lim inft↑∞ E[ξtWt] ≥ 0 for any feasible strategy. Furthermore, g(t) = 0 for t > T also

implies that the claimed optimal wealth W ∗
t is lognormal for t > T and it is straightforward

to verify that ν > 0 implies that limt↑∞E[ξtW
∗
t ] = 0. Therefore,

W0 ≥ E
[∫ ∞

0
ξs(cs + δBs) ds

]
− g(0)y0, (69)

with equality for the claimed optimum, which can be rewritten as what is to be shown. ♣

Lemma 2 (i) Let yt, xt, ξt be as defined in (3), (20), and (23) respectively. Then

ξt = e−(ρ+δ)t

(
yt

y0

)−γ (
xt

x0

)
. (70)

(ii) Given any feasible strategy (c, B) for Problem 1 and the claimed optimal strategy

(c∗, B∗) in Theorem 1, we have

E[
∫ ∞

0
e−(ρ+δ)t

(
(KRtct)

1−γ

1− γ
+ δ

(kBt)
1−γ

1− γ

)
dt]

≤ E[
∫ ∞

0
e−(ρ+δ)t

(
(KRtc∗t )

1−γ

1− γ
+ δ

(kB∗
t )

1−γ

1− γ

)
dt]

+
x0

yγ
0

E[
∫ ∞

0
ξt(ct + δBt − c∗t − δB∗

t )dt].

(71)

PROOF OF LEMMA 2: (i) This can be directly verified using (23), (20), (21), (22), and (3)
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(ii) Because any concave function lies below the tangent line at any point, we have that

for any positive c, c∗, B, and B∗, we have

(KRc)1−γ

1− γ
≤ (KRc∗)1−γ

1− γ
+ (KR)1−γc∗−γ(c− c∗) (72)

and
(kB)1−γ

1− γ
≤ (kB∗)1−γ

1− γ
+ k1−γB∗−γ(B −B∗). (73)

Then (71) follows from (13), (15), and (70). ♣

Lemma 3 (Dominated Convergence Theorem) Suppose that a.s.-convergent sequences of

random variables Xn → X and Yn → Y satisfy 0 ≤ Xn ≤ Yn and E[Yn] → E[Y ] < ∞.

Then E[Xn] → E[X].

PROOF OF LEMMA 3: Since 0 ≤ Xn ≤ Yn, by Fatou’s lemma lim inf E[Xn] ≥ E[X]

and lim inf E[Yn −Xn] ≥ E[Y −X]. These inequalities imply that both lim sup E[Xn] ≥
E[X] and lim inf E[Xn] ≤ E[X] since E[Yn] → E[Y ] < ∞. Therefore, we must have

E[Xn] → E[X]. ♣

Next, let

ψ(x) ≡ A+xα− − η
xb

b
+

1

β1

x (74)

and

ψ̂(x) ≡ −η̂
xb

b
, (75)

where A+ is as defined in Theorem 2.

Lemma 4 In Theorem 2, suppose ν > 0, β1 > 0, and β2 > 0. Then

(i). ψ̂(x) is strictly decreasing and strictly convex;

(ii). ψ(x) is strictly convex and ψx(x) ≤ 1
β1

;

(iii). ∀x ≥ 0, we have ψ(x) ≥ ψ̂(x) and ∀x ≥ x, we have ψx(x) ≥ ψ̂x(x).
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(iv). Given (28), there exists a unique solution x0 > 0 to (30). In addition, W ∗
t defined in

(40) satisfies the borrowing constraint (8).

PROOF OF LEMMA 4: (i). This follows from direct differentiation. (ii). These results also

follow from direct differentiation, noting that A+ > 0 and α− < 0. (iii). This follow from

a similar argument to that for Part (ii) of Lemma 5 below. (iv). By (31), (74), and (75), we

have

ϕ(x, R) =





ψ̂(x) if R = 1 or x ≤ x

ψ(x) otherwise.
(76)

By Part (i), Part (ii), and ψx(x) = ψ̂x(x), ϕ′(x) is continuous and strictly increasing in x.

By inspection of (74) and (75), ϕx(x,R) takes on all values that are less than or equal to
1
β1

. Since y0 > 0, there exists a unique solution x0 > 0 to (30) for each W0 ≥ − 1
β1

. Also,

since ϕx(x, R) ≤ 1
β1

, (40) implies that W ∗
t > −(1−Rt)

yt

β1
, ∀t ≥ 0. ♣

Next, let

ψ(x) ≡ A+xα− + A−xα+ − η
xb

b
+

1

β1

x (77)

and

ψ̂(x) ≡ −η̂
xb

b
, (78)

where A+ and A− are as defined in Theorem 3.

Lemma 5 In Problem 3, suppose ν > 0, β1 > 0, and β2 > 0. Suppose there exists a

solution ζ ∈ (0, 1) to equation (52). Then

(i). ψ̂(x) is strictly convex and strictly decreasing for x ≥ 0;

(ii). ∀x ≤ x we have ψ(x) ≥ ψ̂(x), ∀x ∈ [x, x] we have ψx(x) ≥ ψ̂x(x) and

x <

(
1−K−b

b

)γ

. (79)

(iii).

A− < 0, A+ > 0, x >

(
(1− α−)(1 + δk−b)

b− α−

)γ

.
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(iv). ψ(x) is strictly convex and strictly decreasing for x < x.

(v). Given W0 > 0, there exists a unique solution x0 > 0 to (46). In addition, W ∗
t defined

in (40) satisfies the borrowing constraint (9).

PROOF OF LEMMA 5: (i). γ > 0 implies that b = 1 − 1/γ < 1. Then since ν > 0, direct

differentiation shows that ψ̂(x) is strictly convex and strictly decreasing for x > 0.

(ii). First, since ν > 0, β1 > 0, and β2 > 0, it is straightforward to use the definitions

of α+ and α− show that

α+ > 1 > b > α−, α− < 0. (80)

Recall the definitions of ψ(x) and ψ̂(x) in (77) and (78). Let

h(x) ≡ ψ(x)− ψ̂(x).

It can be easily verified that

1

2
β3x

2ψ̂xx(x)− (β1 − β2)xψ̂x(x)− β2ψ̂(x)− (K−b + δk−b)
xb

b
= 0, (81)

and
1

2
β3x

2ψxx(x)− (β1 − β2)xψx(x)− β2ψ(x)− (1 + δk−b)
xb

b
+ x = 0, (82)

with

ψ(x) = ψ̂(x), (83)

ψx(x) = ψ̂x(x), (84)

ψx(x) = 0 (85)

and

ψxx(x) = 0. (86)
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Then by (81) and (82), h(x) must satisfy

1

2
β3x

2h′′ − (β1 − β2)xh′ − β2h =
1−K−b

b
xb − x. (87)

By (83)-(85) and the fact that ψ̂(x) is monotonically decreasing for x > 0, we have

h(x) = 0, h′(x) = 0, h′(x) > 0. (88)

Differentiating (87) once, we obtain

1

2
β3x

2h′′′ + (β3 − β1 + β2)xh′′ − β1h
′ = (1−K−b)xb−1 − 1. (89)

We consider two possible cases.

Case 1: (1 − K−b)xb−1 − 1 < 0. In this case, the RHS of equation (89) is negative.

Since β1 > 0, h′(x) cannot have any interior nonpositive minimum. To see this, suppose

x̂ ∈ (x, x) achieves an interior minimum with h′(x̂) ≤ 0. Then we would have h′′′(x̂) > 0

and h′′(x̂) = 0, which implies that the LHS is positive. A contradiction. Since h′(x) =

0, h′(x) > 0, we must have h′(x) > 0 for any x ∈ (x, x] because otherwise there would

be an interior nonnegative minimum. Then the fact that h(x) = 0 implies that h(x) > 0 for

any x ∈ (x, x]. Since h′(x) > 0 for any x ∈ (x, x] and h′(x) = 0, we must have h′′(x) ≥ 0.

In addition, if h′′(x) were equal to 0, then we would have h′′′(x) < 0 by (88) and (89)

since (1 −K−b)xb−1 − 1 < 0. However, this would contradict the fact that h′(x) > 0 for

any x ∈ (x, x] and h′(x) = 0. Therefore we must have h′′(x) > 0. Then (87), (88) and

h′′(x) > 0 imply that

x <

(
1−K−b

b

)γ

,

Case 2: (1 − K−b)xb−1 − 1 ≥ 0. In this case, we must have 0 < b < 1 because

K > 1. Therefore x ≤
(
1−K−b

)γ
<

(
1−K−b

b

)γ
. This implies that h′′(x) > 0 by (87)

and (88). Therefore there exists ε > 0 such that h′(x) > 0 for any x ∈ (x, x + ε] because

h′(x) = 0. The RHS of equation (89) is monotonically decreasing in x. Let x∗ be such that
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the RHS of (89) is 0. Then for any x ≤ x∗, the RHS is nonnegative and thus h′(x) cannot

have any interior nonnegative (local) maximum in [x, x∗] for similar reasons to those in

Case 1. Thus there cannot exist any x̂ ∈ (x + ε, x∗] such that h′(x̂) ≤ 0. If x∗ < x,

then for any x ∈ (x∗, x], the RHS is nonpositive and thus h′(x) cannot have any interior

nonpositive (local) minimum in (x∗, x]. Thus there cannot exist any x̂ ∈ (x∗, x] such that

h′(x̂) ≤ 0. Therefore, there cannot exist any x̂ ∈ (x, x) such that h′(x̂) ≤ 0 and thus we

have h′(x) > 0 and h(x) > 0 for any x ∈ (x, x].

Now we show for both cases, h(x) > 0 for any x < x. (79) implies that the RHS of

(87) is positive for x < x and h cannot achieve an interior positive maximum for x < x.

On the other hand, h′′(x) > 0, h′′(x) is continuous at x, and h′(x) = 0 imply that there

exists an ε > 0 such that

∀x ∈ [x− ε, x], h′(x) < 0. (90)

Thus ∀x ∈ [x − ε, x), h(x) > 0. Therefore ∀x < x, h(x) > 0, since otherwise h would

achieve an interior positive maximum in (0, x).

(iii). It can be shown that

A+ =
(η − η̂)(α+ − b)

b(α+ − α−)
xb−α− − (α+ − 1)

(α+ − α−)β1

x1−α−

and

η =
(α+ − 1)(1− α−)(1 + δk−b)

(α+ − b)(b− α−)β1

. (91)

(79) then implies that A+ > 0. Since we also have (49), x must satisfy

x >

(
η(α+ − b)β1

α+ − 1

)γ

.

Since
α+ − b

α+ − 1
>

b− α−
1− α−

,
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we have

x >

(
η(b− α−)β1

1− α−

)γ

,

which ( by the definition (48)) implies that A− < 0.

(iv). Differentiating (77) twice, we have, for x < x,

ψxx(x) = (A−α+(α+ − 1)xα+−b + A+α−(α− − 1)xα−−b − η(b− 1))xb−2

> ψxx(x)(x/x)b−2 = 0, (92)

where the inequality follows from the fact that

d

dx
[A−α+(α+ − 1)xα+−b + A+α−(α− − 1)xα−−b] < 0,

which is implied by A− < 0, A+ > 0 and (80), and the last equality in (92) follows

from ψxx(x) = 0. Thus ψ(x) is strictly convex ∀x < x. Since ψx(x) = 0 and ∀x < x,

ψxx(x) > 0, we must also have ∀x < x, ψx(x) < 0.

(v). By (47), (77), and (78), we have

ϕ(x, R) =





ψ̂(x) if R = 1 or x ≤ x

ψ(x) otherwise.
(93)

By Part (i), Part (iv), and ψx(x) = ψ̂x(x), ϕ′(x) is continuous and strictly increasing in x.

By inspection of (77) and (78), ϕx(x,R) takes on all nonpositive values. Since y0 > 0,

there exists a unique solution x0 > 0 to (46) for each W0 > 0. Also, since ϕx(x,R) < 0,

(40) implies that W ∗
t > 0, ∀t ≥ 0. ♣

Lemma 6 Given the definitions in Theorem 2 and Theorem 3,

1. Mt as defined in (55) is a supermartingale for any feasible policy and a martingale

for the claimed optimal policy.
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2.

lim
t→∞E[(1−Rt)e

−(ρ+δ)t(1− γ)V (Wt, yt, 0)] ≥ 0, (94)

with equality for the claimed optimal policy.

PROOF OF LEMMA 6:

(i) Define W = −yϕx(x, 0). Then for any W ≥ 0,

V (W, y, 0) ≥ V (W, y, 1), (95)

with equality for W ≥ W .8

Applying the generalized Itô’s lemma to Mt defined in the proofs of Theorems 2 and 3,

we have

Mt = M0

+
∫ t

0
(1−Rs)

{
e−(ρ+δ)s

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
+ E

[
d
(
e−(ρ+δ)sV (Ws, ys, 0)

)]}
ds

+
∫ t

0
e−(ρ+δ)s(V (Ws, ys, 1)− V (Ws, ys, 0))dRs

+
∫ t

0
(1−Rs)e

−(ρ+δ)s(VW (Ws, ys, 0)θ>s σ + ysVy(Ws, ys, 0)σ>y )dZs, (96)

By the definitions of V , ϕ, (c∗, B∗, R∗, W ∗), and the fact that ϕ(x, 0) satisfies (81)-(84),

we obtain that the first integral is always nonpositive for any feasible policy (c, B, θ, R)

and is equal to zero for the claimed optimal policy (c∗, B∗, θ∗, R∗). By (95), the third term

in (96) is always nonpositive for every feasible retirement policy Rt and equal to zero for

the claimed optimal policy R∗
t . In addition, using the expressions for the claimed optimal

θ∗t , V , B∗
t , and W ∗

t , we have that under the claimed optimal policy, the stochastic integral

8This can be shown as follows: Let x and xR be such that −yϕx(x, 0) = W and −yϕx(xR, 1) = W .
Then we have

ϕ(x, 0)− ϕ(xR, 1) ≥ ϕ(x, 1)− ϕ(xR, 1) ≥ ϕx(xR, 1)(x− xR) = xϕx(x, 0)− xRϕx(xR, 1),

where the first inequality follows from ϕ(x, 0) ≥ ϕ(x, 1) by Lemmas 4 and 5 and the second inequality from
the convexity of ϕ(x, 1). After rearranging, we obtain (95).
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is a martingale because (1) yt is a geometric Brownian motion; (2) in Theorem 2, xt is also

a geometric Brownian motion; (3) in Theorem 3, xt is bounded between x and x before

retirement, and xt is also a geometric Brownian motion after retirement. This shows that

Mt is a local supermartingale for all feasible policies and a martingale for the claimed

optimal policy.

If γ < 1, then V (Wt, yt, 0) > 0 and thus

lim
t→∞E[(1−Rt)e

−(ρ+δ)t(1− γ)V (Wt, yt, 0)] ≥ 0.

In addition, Mt is always nonnegative and thus a supermartingale.

If γ > 1, we divide the proof that Mt is actually a supermartingale for any feasible

policy into two parts: One for Theorem 2 and the other for Theorem 3.

(A) For Theorem 2, consider an investor who has an initial endowment of (W0, (1 +

ε)y0) (ε > 0) but follows the same strategy (c, B, θ, R) for an investor who has an initial

endowment of (W0, y0) and saves the additional income until retirement, and follows the

optimal strategy given the implied wealth afterwards. Let the implied wealth process be

W ε
t , which converges to Wt as ε → 0. By (96), there exists a series of increasing stopping

times τn →∞ such that

V (W0, (1 + ε)y0, 0)

≥ E
∫ τn∧t

0
e−(ρ+δ)s

[
(1−Rs)

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
ds + V (W ε

s , (1 + ε)ys, 1)dRs

]

+E[(1−Rτn∧t)e
−(ρ+δ)(τn∧t)V (W ε

τn∧t, (1 + ε)yτn∧t, 0)]. (97)

Since the integrand in the integral of (97) is always negative, this integral is monotonically

decreasing in time. In addition,

0 ≥ (1−Rt)e
−(ρ+δ)tV (W ε

t , (1 + ε)yt, 0)

≥ e−(ρ+δ)tV (− yt

β1

, (1 + ε)yt, 0)
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= V (− 1

β1

, (1 + ε), 0)e−(ρ+δ)ty1−γ
t (98)

≥ V (− 1

β1

, (1 + ε), 0)Nt, (99)

where

Nt ≡ e−
1
2
(1−γ)2σ2

yt+(1−γ)σyZt (100)

is a martingale with E[Nt] = 1, the second inequality follows from V negative and increas-

ing in W and W ε
t > Wt > − yt

β1
, the equality follows from the form of V as defined by

(42) and (43), and the last inequality follows from V (− 1
β1

, (1 + ε), 0) < 0 and β2 > 0. In

addition, V (− 1
β1

, (1 + ε), 0) > −∞.

Therefore, taking n → ∞ in (97), by the monotone convergence theorem for the first

term and Lemma 3 (a generalized dominated convergence theorem) for the second term,

we have

V (W0, (1 + ε)y0, 0)

≥ E
∫ t

0
e−(ρ+δ)s

[
(1−Rs)

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
ds + V (W ε

s , (1 + ε)ys, 1)dRs

]

+E[(1−Rt)e
−(ρ+δ)tV (W ε

t , (1 + ε)yt, 0)]. (101)

Next, taking ε → 0 in (101), we obtain M0 ≥ E[Mt] for any t ≥ 0. Since the above

argument applies to any time s ≤ t, we have Ms ≥ E[Mt] for any t ≥ s and thus Mt is a

supermartingale for every feasible policy.

(B) For Theorem 3, by (96), there exists an increasing sequence of stopping times

τn →∞ such that M0 ≥ E[Mτn∧t], i.e.,

V (W0, y0, 0)

≥ E
∫ τn∧t

s
e−(ρ+δ)s

[
(1−Rs)

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
ds + V (Ws, ys, 1)dRs

]

+E[(1−Rτn∧t)e
−(ρ+δ)(τn∧t)V (Wτn∧t, yτn∧t, 0)]. (102)
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Since the integrand in the integral of (102) is always negative, this integral is monotonically

decreasing in time. In addition,

0 ≥ (1−Rt)e
−(ρ+δ)tV (Wt, yt, 0)

≥ e−(ρ+δ)tV (0, yt, 0)

= V (0, 1, 0)e−(ρ+δ)tyt
1−γ (103)

≥ V (0, 1, 0)Nt, (104)

where Nt, as defined in (100), is a martingale with E[Nt] = 1, the second inequality follows

from V negative and increasing in W and Wt > 0, the equality follows from the form of V

as defined by (42) and (43), and the last inequality follows from V (0, 1, 0) < 0 and β2 > 0.

In addition, V (0, 1, 0) > −∞.

Therefore, taking n → ∞ in (102), by the monotone convergence theorem for the first

term and Lemma 3 (a generalized dominated convergence theorem) for the second term,

we have

V (W0, y0, 0)

≥ E
∫ t

0
e−(ρ+δ)s

[
(1−Rs)

(
c1−γ
s

1− γ
+ δ

(kBs)
1−γ

1− γ

)
ds + V (Ws, ys, 1)dRs

]

+E[(1−Rt)e
−(ρ+δ)tV (Wt, yt, 0)]. (105)

That is: M0 ≥ E[Mt] for any t ≥ 0. Since the above argument applies to any time s ≤ t,

we have Ms ≥ E[Mt] for any t ≥ s and thus Mt is a supermartingale for all feasible

policies.

(ii) Since (1− γ)V (W, y, 0) ≥ 0 for every feasible policy,9 we have

0 ≤ lim
t→∞E[(1−Rt)e

−(ρ+δ)t(1− γ)V (Wt, yt, 0)]

9This can be shown as follows: VW (W, y, 0) = y−γx > 0 and thus V (W, y, 0) increases in W . If γ < 1,
then V (W,y, 0) ≥ 0 because V (W, y, 0) ≥ V (W, y, 1) ≥ 0. If γ > 1, then V (W,y, 0) < 0 because
V (W, y, 0) ≤ V (W, y, 0) = V (W, y, 1) < 0.
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= lim
t→∞E[(1−Rt)e

−(ρ+δ)ty1−γ
t (1− γ)(ϕ(xt, 0)− xtϕx(xt, 0))]

≤ lim
t→∞E[L1e

−(ρ+δ)ty1−γ
t + η̂e−(ρ+δ)t/γξb

t ]

= 0, (106)

where the second inequality follows from (1) the definition of ϕ in Theorem 2, A+ > 0,

α− < 0, and xt > x; and (2) the fact that in Theorem 3, xt, ϕ(xt), and ϕx(xt) are all

bounded, while Rt = 1 for t > τ ∗. The last equality in (106) follows from the conditions

that ν > 0 and β2 > 0.

Therefore, for the claimed optimal policy, we obtain

lim
t→∞E[(1−Rt)e

−(ρ+δ)tV (Wt, yt, 0)] = 0.

For any feasible policy, if γ < 1, then V (W, y, 0) > 0 and therefore (94) holds. If

γ > 1, since β2 > 0, we have limt→∞ E[e−(ρ+δ)tyt
1−γ] = 0. Therefore, taking the limit as

t →∞ in (98),

lim
t→∞E[(1−Rt)e

−(ρ+δ)tV (Wt, (1 + ε)yt, 0)] = 0,

which implies that (94) holds, after taking the limit as ε → 0. Similarly taking the limit as

t →∞ in (103), we have that (94) also holds. This completes the proof. ♣

Lemma 7 Suppose ν > 0, β1 > 0, and β2 > 0. Then there exists a unique solution

ζ∗ ∈ (0, 1) to equation (52) and

ζ∗ < ζ = Min(

(
1−K−b

b(1 + δk−b)

)γ

, 1).

PROOF OF LEMMA 7: Since ν > 0, β1 > 0, and β2 > 0,

α+ > 1 > b > α−, α− < 0.
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Next, since ζb−α+ dominates ζ1−α+ as ζ → 0, we have

lim
ζ→0

q(ζ) = lim
ζ→0

− 1−K−b

b(1 + δk−b)
(α− − b)(α+ − 1)ζb−α+ = +∞.

Next, it is easy to verify that

q(1) = −(α+ − 1)(α− − 1)(α+ − α−)(K−b + δk−b)

α+α−(1 + δk−b)
< 0.

Now suppose ζ̂ =
(

1−K−b

b(1+δk−b)

)γ
< 1. Then we have 1−K−b

b(1+δk−b)
ζ̂b−α+ − 1

α+
= ζ̂1−α+ − 1

α+
,

1−K−b

b(1+δk−b)
ζ̂b−α− − 1

α−
= ζ̂1−α− − 1

α−
, and ζ̂1−α+ > 1 > 1

α+
. It follows that

q(ζ̂) = −1

γ
(ζ̂1−α+ − 1

α+

)(ζ̂1−α− − 1

α−
)(α+ − α−) < 0.

Then by continuity of q, there exists a solution ζ∗ ∈ (0, ζ) such that q(ζ∗) = 0. Sup-

pose there exists another solution ζ̂ ∈ [0, 1) such that q(ζ̂) = 0. Let V (W, y, 0) and W

be the value function and boundary respectively corresponding to ζ∗ and v̂(W, y, 0) and

Ŵ be the value function and boundary respectively corresponding to ζ̂ . Without loss of

generality, suppose W > Ŵ . Since Ŵ is the retirement boundary, the value function cor-

responding to ζ̂ for W > W > Ŵ is equal to V (W, y, 1). However, Lemma 5 implies

that V (W, y, 0) > V (W, y, 1) for any W < W . This implies that Ŵ cannot be the optimal

retirement boundary which contradicts Theorem 3. Therefore the solution to equation (52)

is unique. ♣

PROOF OF PROPOSITION 1. By Theorem 1, the fraction of total wealth W + H invested

in the stock in Problem 1 is constantly equal to µ−r
γσ2 .

By Theorem 2 and Lemma 2, we have

θ

W + H
=

µ− r

γσ2

γA+α−(α− − 1)xα−−1 + ηxb−1

−A+α−xα−−1 + ηxb−1 − 1
β1

x1−α−xα−−1
.
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Plugging in the expressions for A+ and x and using the fact that α− < b, we have

γA+α−(α− − 1)xα−−1 + ηxb−1

−A+α−xα−−1 + ηxb−1 − 1
β1

x1−α−xα−−1
> 1.

♣

PROOF OF PROPOSITION 2. The result on the market value of human capital for Problem

1 is directly implied by Lemma 1, Part (i).

For the cases with voluntary retirement, since there is no more labor income after retire-

ment, the market value of human capital after retirement is zero. We next prove the claims

for after retirement. Using the expressions of H and the dynamics of xt and yt, it can be

verified that for xt > x in Theorem 2 and for x < xt < x in Theorem 3 we have that the

change in the market value of human capital plus the flow of labor income is given by

d(ξtH(xt, yt)) + ξtytdt

= ξt(
1

2
β3x

2
t Hxx − (β1 − β2 − β3)xtHx − β1H + yt)dt

+ξt(xtHxσ
>
x + H(σ>y − κ>))dZt. (107)

The drift term in (107) is equal to zero after plugging in the expressions for H (for Theorem

3, the additional local time term at x from applying the generalized Itô’s lemma is also equal

to zero because it can be verified that Hx(x, yt) = 0). This implies that

Mt ≡ ξtH(xt, yt) +
∫ t

0
ξsysds

is a local martingale. In addition, there exists a constant 0 < L < ∞ such that

|ξt(xtHxσ
>
x + H(σ>y − κ>))| < Lξtyt
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in Theorem 2 since α− < 0 and xt > x, and in Theorem 3 since x < xt ≤ x. Since both ξt

and yt are geometric Brownian motions, we have that Mt is actually a martingale. Recall

the definition (41) of the optimal retirement time τ ∗. We have, ∀t ≤ τ ∗

ξtH(xt, yt) +
∫ t

0
ξsysds = Et[ξτ∗H(x, yτ∗) +

∫ τ∗

0
ξsysds],

which implies that

H(xt, yt) = ξ−1
t Et[

∫ τ∗

t
ξsysds],

since it can be easily verified that H(x, y) = 0. Therefore H as specified in the proposition

is indeed the market value of the future labor income. ♣

PROOF OF PROPOSITION 3. First, as shown in Lemmas 4 and 5, the dual value function

ϕ defined in Theorems 2 and 3 are convex and thus the wealth level Wt defined these

theorems decreases with the dual variable xt. By Proposition 2, given the optimal policy

in Theorem 2, differentiating the expression for the human capital with respect to xt yields

that the human capital is increasing in xt. Therefore, human capital decreases with the

financial wealth W for Problem 2. For Problem 3, differentiating the human capital H with

respect to x, we have that before retirement

∂H(x, y)

∂x
=

y

β1

(A(α− − 1)xα−−1 + B(α+ − 1)xα+−1)

=
y

β1

(α+ − 1)(1− α−)x1−α−xα+−2

(α+ − 1)xα+−α− − (α− − 1)xα+−α−

((
x

x

)α+−α−
− 1

)
> 0,

where the second equality follows from the expressions of A and B in Proposition 2 and

the inequality follows from the fact that α+ > 1 > α− and x < x. Thus, human capital

decreases with the financial wealth W also for Problem 3. ♣

PROOF OF PROPOSITION 4. Let

h(x) = A+xα− + A−xα+ − η
xb

b
+

1

β1

x + η̂
xb

b
,
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where A+ and A− are defined as in Theorem 3,

hN(x) = A+Nxα− − η
xb

b
+

1

β1

x + η̂
xb

b
,

where A+N denotes the coefficient A+ defined in Theorem 2. Let x be as defined in Theo-

rem 3 and xN denote the retirement boundary x defined in Theorem 2.

We prove by contradiction. Suppose x ≤ xN . By Lemmas 4 and 5, we have h(x) =

h′(x) = 0, hN(xN) = h′(xN) = 0. From the proof of Lemma 5, and h′(x) > 0 for all

x ∈ (x, x] and therefore

h(xN) ≥ 0 = hN(xN) and h′(xN) ≥ 0 = h′N(xN). (108)

The first equation of (108) implies that

A+x
α−
N + A−x

α+

N ≥ A+Nx
α−
N ,

which in turn implies

A+ > A+N , (109)

since A− < 0 as shown in Lemma 5. On the other hand, the second equation of (108)

implies that

A+α−x
α−−1
N + A−α+x

α+−1
N ≥ A+Nα−x

α−−1
N ,

which in turn implies

A+ < A+N , (110)

since A− < 0 and α+ > 0. Result (110) contradicts (109). This shows that we must have

x > xN . Since at retirement the financial wealth is equal to −yϕ(xN) and −yϕ(x) for

Problems 2 and 3 respectively and −yϕ(xN) = η̂x
−1/γ
N , −yϕ(x) = η̂x−1/γ , we must have

the financial wealth level W at retirement for Problem 2 is higher than that for Problem 3

♣
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PROOF OF PROPOSITION 5. First we prove the result for Theorem 2. Recall that

dxt = µxxtdt + σxxtdBt.

Let

f(x) ≡ log(x/x)
1
2
σ2

x − µx

.

Then by Itô’s lemma, for any stopping time T ≥ t we have

f(xT )+
∫ T

t
1ds = f(xt)+

∫ T

t

(
1

2
σ2

xx
2
sfxx + µxxsfx + 1

)
ds+

∫ T

t

σx
1
2
σ2

x − µx

dZs, (111)

which implies that f(xT )+
∫ T
t 1ds is a martingale since it can be easily verified that the drift

term is zero given the definition of f(x) and the stochastic integral is a scaled Brownian

motion and thus a martingale. Thus taking T = τ ∗ and taking expectation in (111), we get

f(x) = Et[τ
∗|xt = x],

since xτ∗ = x and f(x) = 0. A similar argument applies to the case for Theorem 3, noting

that when evaluated at x = x, the first derivative of the right hand side of (57) with respect

to x is zero and xt is bounded. This completes the proof. ♣
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